Skip to main content
Log in

Nano-structured thin films growth in stochastic plasma-condensate systems

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We have derived the stochastic model of plasma-condensate systems by taking into account anisotropy in transference of adatoms between neighbor layers and fluctuations of adsorbate flux. In the framework of stability analysis we have found that an increase in the fluctuation’s intensity leads to the homogenization of the adsorbate distribution in the system. By using numerical simulations we have shown, that by varying the fluctuation’s intensity one can control both dynamics of pattern formation in the system and morphology of the growing surface. It is found that with the noise intensity growth one gets morphological transformation from separated adsorbate islands on the substrate towards separated holes inside adsorbate matrix. It is shown that the introduced fluctuations lead to anomalous dynamics of the mean size of adsorbate islands growth. Statistical properties of the adsorbate/vacancy islands were studied in detail.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Venables, G.D.T. Spiller, M. Hanbücken, Rep. Prog. Phys. 47, 399 (1984)

    Article  ADS  Google Scholar 

  2. A. Pimpinelli, J. Villian, Physics of Crystal Growth (Cambridge University Press, Cambridge, 1998)

  3. K. Pohl, M.C. Bartelt, J. de la Figuera et al., Nature 397, 238 (1999)

    Article  ADS  Google Scholar 

  4. Y.W. Mo, B.S. Swartzentruber, R. Kariotis, M.B. Webb, M.G. Lagally, Phys. Rev. Lett. 63, 2393 (1989)

    Article  ADS  Google Scholar 

  5. G.E. Cirlin, V.A. Egorov, L.V. Sokolov, P. Werner, Semiconductors 36, 1294 (2002)

    Article  ADS  Google Scholar 

  6. J.P. Bucher, E. Hahn, P. Fernandez, C. Massobrio, K. Kern, Europhys. Lett. 27, 473 (1994)

    Article  ADS  Google Scholar 

  7. V. Gorodetskii, J. Lauterbach, H.A. Rotermund et al., Nature 370, 276 (1994)

    Article  ADS  Google Scholar 

  8. K. Kern, H. Niehus, A. Schatz et al., Phys. Rev. Lett. 67, 855 (1991)

    Article  ADS  Google Scholar 

  9. T.M. Parker, L.K. Wilson, N.G. Condon, F.M. Leibsle, Phys. Rev. B 56, 6458 (1997)

    Article  ADS  Google Scholar 

  10. H. Brune, M. Giovannini, K. Bromann, K. Kern, Nature 394, 451 (1998)

    Article  ADS  Google Scholar 

  11. P.G. Clark, C.M. Friend, J. Chem. Phys. 111, 6991 (1999)

    Article  ADS  Google Scholar 

  12. V.I. Perekrestov, A.I. Olemskoi, Yu.O. Kosminska, A.A. Mokrenko, Phys. Lett. A 373, 3386 (2009)

    Article  ADS  Google Scholar 

  13. Y.A. Kosminska, A.A. Mokrenko, V.I. Perekrestov, Tech. Phys. Lett. 37, 538 (2011)

    Article  ADS  Google Scholar 

  14. A.G. Zhiglinskiy, V.V. Kuchinskiy, Mass Transfer at an Interaction of Plasma with Surface (Energoizdat, Moscow, 1991) (in Russian)

  15. V.O. Kharchenko, D.O. Kharchenko, V.V. Yanovsky, Nanoscale Res. Lett. 12, 337 (2017)

    Google Scholar 

  16. N.G. Van Kampen, Stochastic Processes in Physics and Chemistry (North-, Amsterdam, 1992)

  17. J. Garcia-Ojalvo, J.M. Sancho, Noise in Spatially Extended Systems (Springer, New York, 1999)

  18. D.O. Kharchenko, V.O. Kharchenko, I.O. Lysenko, Phys. Scr. 83, 045802 (2011)

    Article  ADS  Google Scholar 

  19. V.O. Kharchenko, D.O. Kharchenko, Phys. Rev. E 86, 041143 (2012)

    Article  ADS  Google Scholar 

  20. S.B. Casal, H.S. Wio, S. Mangioni, Physica A 311, 443 (2002)

    Article  ADS  Google Scholar 

  21. V.O. Kharchenko, D.O. Kharchenko, Surf. Sci. 637–638, 90 (2015)

    Article  Google Scholar 

  22. D. Walgraef, Physica E 18, 393 (2003)

    Article  ADS  Google Scholar 

  23. D. Walgraef, Int. J. Quant. Chem. 98, 248 (2004)

    Article  Google Scholar 

  24. V.O. Kharchenko, D.O. Kharchenko, S.V. Kokhan et al., Phys. Scr. 86, 055401 (2012)

    Article  Google Scholar 

  25. V.O. Kharchenko, D.O. Kharchenko, A.V. Dvornichenko, Surf. Sci. 630, 158 (2014)

    Article  ADS  Google Scholar 

  26. Y. Mishin, D. Farkas, M.J. Mehl, D.A. Papaconstantopoulos, Phys. Rev. B 59, 3393 (1999)

    Article  ADS  Google Scholar 

  27. M. Hildebrand, A.S. Mikhailov, G. Ertl, Phys. Rev. Lett. 81, 2602 (1998)

    Article  ADS  Google Scholar 

  28. M. Hildebrand, A.S. Mikhailov, G. Ertl, Phys. Rev. E 58, 5483 (1998)

    Article  ADS  Google Scholar 

  29. V.O. Kharchenko, A.V. Dvornichenko, V.N. Borysiuk, Eur. Phys. J. B 91, 93 (2018)

    Article  ADS  Google Scholar 

  30. J. Swift, P.C. Hohenberg, Phys. Rev. A 15, 319 (1977)

    Article  ADS  Google Scholar 

  31. J.M. Sancho, M. San Miguel, S.L. Katz, J.D. Gunton, Phys. Rev. A 26, 1589 (1982)

    Article  ADS  Google Scholar 

  32. G.E.P. Box, M.E. Muller, Ann. Math. Stat. 29, 610 (1958)

    Article  Google Scholar 

  33. Y. Lei, A. Uhl, C. Becker et al., Phys. Chem. Chem. Phys. 12, 1264 (2010)

    Article  Google Scholar 

  34. X. Lai, T.P. St. Clair, D.W. Goodman, Faraday Discuss. 114 279 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasyl O. Kharchenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharchenko, V.O., Dvornichenko, A.V. Nano-structured thin films growth in stochastic plasma-condensate systems. Eur. Phys. J. B 92, 57 (2019). https://doi.org/10.1140/epjb/e2019-90588-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90588-9

Keywords

Navigation