Skip to main content
Log in

Influence of grain boundaries on the austenitic and martensitic phase transitions in iron

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Using classical molecular dynamics simulations, we study the martensitic and austenitic phase transformation in an iron crystal containing a symmetric tilt grain boundary (GB). Without a GB, the system does not transform. The presence of a GB enables the transformation. The new phase nucleates at the GB. The austenitic transition temperature decreases approximately linearly with the GB energy. Here, the GB inherits its inherent periodicity to the microstructure of the forming austenite phase. The martensitic transformation proceeds via a two-step pathway resulting in a twinned microstructure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd edn. (Chapman & Hall, London, 1992)

  2. E. Pereloma, D.V. Edmonds, eds., in Phase Transformations in Steels, Diffusionless Transformations, High Strength Steels, Modelling and Advanced Analytical Techniques (Woodhead Publishing Limited, Cambridge, UK, 2012), Vol. 2

  3. Z. Yang, R.A. Johnson, Model. Simul. Mater. Sci. Eng. 1, 707 (1993)

    Article  ADS  Google Scholar 

  4. C. Bos, J. Sietsma, B.J. Thijsse, Phys. Rev. B 1, 104117 (2006)

    Article  ADS  Google Scholar 

  5. H.M. Urbassek, L. Sandoval, in Phase Transformations in Steels, Diffusionless Transformations, High Strength Steels, Modelling and Advanced Analytical Techniques, edited by E. Pereloma, D.V. Edmonds (Woodhead Publishing Limited, Cambridge, UK, 2012), Vol. 2, pp. 433–463

  6. R. Meyer, P. Entel, Phys. Rev. B 1, 5140 (1998)

    Article  ADS  Google Scholar 

  7. B. Wang, H.M. Urbassek, Metall. Mater. Trans. A 1, 2471 (2016)

    Article  Google Scholar 

  8. K. Verbeken, L. Barbé, D. Raabe, ISIJ Int. 1, 1601 (2009)

    Article  Google Scholar 

  9. G.H. Zhang, T. Takeuchi, M. Enomoto, Y. Adachi, Metall. Trans. A 1, 1597 (2011)

    Article  Google Scholar 

  10. H. Song, J.J. Hoyt, Model. Simul. Mater. Sci. Eng. 1, 085012 (2015)

    Article  ADS  Google Scholar 

  11. J. Meiser, H.M. Urbassek, AIP Adv. 1, 085017 (2016)

    Article  ADS  Google Scholar 

  12. G.V. Kurdjumov, G. Sachs, Z. Phys. 1, 325 (1930)

    Article  ADS  Google Scholar 

  13. W. Pitsch, Philos. Mag. 1, 577 (1959)

    Article  ADS  Google Scholar 

  14. D. Hull, D.J. Bacon, Introduction to Dislocations, 3rd edn. (Pergamon, Oxford, 1984)

  15. M.W. Finnis, M. Rühle, in Structure of Solids, Materials Science and Technology, A Comprehensive Treatment, edited by V. Gerold (VCH, Weinheim, 1993), Vol. 1, Chap. 9, p. 533

  16. S. Nose, J. Chem. Phys. 1, 511 (1984)

    Article  ADS  Google Scholar 

  17. W.G. Hoover, Phys. Rev. A 1, 1695 (1985)

    Article  ADS  Google Scholar 

  18. C. Engin, L. Sandoval, H.M. Urbassek, Model. Simul. Mater. Sci. Eng. 1, 035005 (2008)

    Article  ADS  Google Scholar 

  19. L. Sandoval, H.M. Urbassek, P. Entel, Phys. Rev. B 1, 214108 (2009)

    Article  ADS  Google Scholar 

  20. B. Wang, H.M. Urbassek, Phys. Rev. B 1, 104108 (2013)

    Article  ADS  Google Scholar 

  21. B. Wang, E. Sak-Saracino, N. Gunkelmann, H.M. Urbassek, Comput. Mater. Sci. 1, 399 (2014)

    Article  Google Scholar 

  22. B. Wang, E. Sak-Saracino, L. Sandoval, H.M. Urbassek, Model. Simul. Mater. Sci. Eng. 1, 045003 (2014)

    Article  ADS  Google Scholar 

  23. E. Sak-Saracino, H.M. Urbassek, Eur. Phys. J. B 1, 169 (2015)

    Article  ADS  Google Scholar 

  24. X. Ou, Mater. Sci. Technol. 1, 822 (2017)

    Article  Google Scholar 

  25. S. Karewar, J. Sietsma, M.J. Santofimia, Acta Mater. 1, 71 (2018)

    Article  Google Scholar 

  26. Y. Shibuta, S. Takamoto, T. Suzuki, ISIJ Int. 1, 1582 (2008)

    Article  Google Scholar 

  27. A.P. Sutton, V. Vitek, Phil. Trans. R. Soc. Lond. A 1, 1 (1983)

    Article  ADS  Google Scholar 

  28. D. Wolf, Philos. Mag. A 1, 447 (1990)

    Article  ADS  Google Scholar 

  29. S. Plimpton, J. Comput. Phys. 1, 1 (1995)

    Article  ADS  Google Scholar 

  30. J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 1, 4950 (1987)

    Article  Google Scholar 

  31. D. Faken, H. Jonsson, Comput. Mater. Sci. 1, 279 (1994)

    Article  Google Scholar 

  32. A. Stukowski, Model. Simul. Mater. Sci. Eng. 1, 015012 (2010)

    Article  ADS  Google Scholar 

  33. L. Sandoval, H.M. Urbassek, P. Entel, New J. Phys. 1, 103027 (2009)

    Article  Google Scholar 

  34. R. Freitas, M. Asta, M. de Koning, Comput. Mater. Sci. 1, 333 (2016)

    Article  Google Scholar 

  35. B. Wang, H.M. Urbassek, Model. Simul. Mater. Sci. Eng. 1, 085007 (2013)

    Article  ADS  Google Scholar 

  36. E. Sak-Saracino, H.M. Urbassek, Int. J. Comput. Mater. Sci. Eng. 1, 1650001 (2016)

    Google Scholar 

  37. Y.C. Wang, H. Ye, Philos. Mag. A 1, 261 (1996)

    Google Scholar 

  38. H.-K. Mao, W.A. Bassett, T. Takahashi, J. Appl. Phys. 1, 272 (1967)

    Article  ADS  Google Scholar 

  39. F.M. Wang, R. Ingalls, Phys. Rev. B 1, 5647 (1998)

    Article  ADS  Google Scholar 

  40. P. Entel, R. Meyer, K. Kadau, Philos. Mag. B 1, 183 (2000)

    Article  ADS  Google Scholar 

  41. J.L. Dossett, H.E. Boyer, Practical Heat Treating, 2nd edn. (ASM International, Materials Park, OH, USA, 2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert M. Urbassek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meiser, J., Urbassek, H.M. Influence of grain boundaries on the austenitic and martensitic phase transitions in iron. Eur. Phys. J. B 92, 47 (2019). https://doi.org/10.1140/epjb/e2019-90576-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90576-1

Keywords

Navigation