Skip to main content
Log in

DFT calculations on the structural and electronic properties of vacancy effects in the silicon nanowires

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A theoretical study was undertaken of the effects of single and multiple vacancies created at different surface sites of a non-passivated silicon nanowire (SiNW) with diameter ~11.0 Å, grown in the [001] direction. The results showed that vacancies at vertex site were most energetically favorable, due to the surface dimerization process, which was responsible for metallic or semi-metallic behavior in the perfect [001] SiNW. Modifications at wavefunction localization due surface dimerization and their consequences at electronic properties were also investigated and provided helpful information on application of these materials as gas-sensing nanodevices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Bettotti, M. Cazzanelli, L.D. Negro, B. Danese, Z. Gaburro, C.J. Oton, G.V. Prakash, L. Pavesi, J. Phys.: Condens. Matter 14, 8253 (2002)

    ADS  Google Scholar 

  2. Y. Cui, Z. Zhong, D. Wang, W. Wang, C. Lieber, Nano Lett. 3, 149 (2003)

    Article  ADS  Google Scholar 

  3. Y. Cui, C.M. Lieber, Science 291, 851 (2001)

    Article  ADS  Google Scholar 

  4. T. Mikolajick, A. Heinzig, J. Trommer, S. Pregl, M. Grube, G. Cuniberti, W.M. Weber, Phys. Status Solidi Rapid Res. Lett. 7, 793 (2013)

    Article  ADS  Google Scholar 

  5. N.P. Dasgupta, J. Sun, C. Liu, S. Brittman, S.C. Andrews, J. Lim, H. Gao, R. Yan, P. Yang, Adv. Mater. 26, 2137 (2014)

    Article  Google Scholar 

  6. Y. Huang, X. Duan, Y. Cui, L. Lauhon, K.H. Kim, C. Lieber, Science 294, 1313 (2001)

    Article  ADS  Google Scholar 

  7. Y. Cui, Q. Wei, H. Park, C.M. Lieber, Science 293, 1289 (2001)

    Article  ADS  Google Scholar 

  8. F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, C.M. Lieber, Proc. Natl. Acad. Sci. U.S.A. 101, 14017 (2004)

    Article  ADS  Google Scholar 

  9. B. Tian, X. Zheng, T. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Nature 449, 885 (2007)

    Article  ADS  Google Scholar 

  10. B. Tian, T. Kempa, C. Lieber, Chem. Soc. Rev. 38, 16 (2009)

    Article  Google Scholar 

  11. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnet, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)

    Article  ADS  Google Scholar 

  12. R. Rurali, Rev. Mod. Phys. 82, 427 (2010)

    Article  ADS  Google Scholar 

  13. R. Rurali, A. Poissier, N. Lorente, Phys. Rev. B 74, 165324 (2006)

    Article  ADS  Google Scholar 

  14. J.A. Yan, L.Y.M. Chou, Phys. Rev. B 76, 115319 (2007)

    Article  ADS  Google Scholar 

  15. R. Rurali, N. Lorente, Phys. Rev. Lett. 94, 026805 (2005)

    Article  ADS  Google Scholar 

  16. F. Zwanenburg, A. Dzurak, A. Morello, M. Simmons, L. Hollenberg, G. Klimeck, S. Rogge, S. Coppersmith, M. Eriksson, Rev. Mod. Phys. 85, 961 (2007)

    Article  ADS  Google Scholar 

  17. S. Schofield, P. Studer, C. Hirjibehedin, N. Curson, G. Aeppli, D. Bowler, Nat. Commun. 4, 1649 (2013)

    Article  ADS  Google Scholar 

  18. H. Kawai, O. Neucheva, T. Yap, C. Joachim, M. Saeys, Surf. Sci. 645, 88 (2016)

    Article  ADS  Google Scholar 

  19. W. Ye, K. Min, P. Martin, A. Rockett, N. Aluru, J. Lyding, Surf. Sci. 609, 147 (2013)

    Article  ADS  Google Scholar 

  20. H.L.M. Taucer, M. Rashidi, M. Koleini, L. Livadaru, J. Pitters, M. Cloutier, M. Salomons, R. Wolkow, New J. Phys. 17, 073023 (2015)

    Article  Google Scholar 

  21. A. Lu, Proc. SPIE 9068, 908605 (2013)

    Google Scholar 

  22. L. Yang, L. Pei, S. Hai-Bo, C. Dan, D. Qian-Min, W. Le, Chin. Phys. B 23, 067304 (2014)

    Article  ADS  Google Scholar 

  23. R. Rurali, N. Lorente, Nanotechnology 16, S250 (2005)

    Article  ADS  Google Scholar 

  24. J. Lento, R.M. Nieminen, J. Phys.: Condens. Matter 15, 4387 (2003)

    ADS  Google Scholar 

  25. D. West, Y.Y. Sun, S.B. Zhang, Appl. Phys. Lett. 101, 082105 (2012)

    Article  ADS  Google Scholar 

  26. C.G.V. de Walle, J. Neugebauer, Appl. Phys. Rev. 95, 3851 (2004)

    Article  ADS  Google Scholar 

  27. J. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  28. X. Gonze, J.M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet et al., Comput. Mater. Sci. 25, 478 (2002)

    Article  Google Scholar 

  29. X. Gonze, G. Rignanese, M. Verstraete, J. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami et al., Z. Kristallogr. 220, 558 (2005)

    Google Scholar 

  30. N. Troullier, J. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  31. H. Monkhorst, J. Pack, Phys. Rev. 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  32. I.-W. Lyo, Ph. Avouris, Science 253, 173 (1991)

    Article  ADS  Google Scholar 

  33. T.-C. Shen, C. Wang, G.C. Abeln, J.R. Tucker, J.W. Lyding, Ph. Avouris, R.E. Walkup, Science 268, 1590 (1995)

    Article  ADS  Google Scholar 

  34. E.T. Foley, A.F. Kam, J.W. Lyding, Ph. Avouris, Phys. Rev. Lett. 80, 1336 (1998)

    Article  ADS  Google Scholar 

  35. Y. Wei, K. Min, P. Martin, A.A. Rockett, N. Aluru, J. Lyding, Surf. Sci. 609, 147 (2013)

    Article  ADS  Google Scholar 

  36. H. Kawai, O. Neucheva, T. Yap, C. Joachim, M. Saeys, Surf. Sci. 645, L88 (2016)

    Article  ADS  Google Scholar 

  37. H. Labidi, M. Taucer, M. Rashidi, M. Koleini, L. Livadaru, J. Pitters, M. Cloutier, M. Salomons, R.A. Wolkow, New J. Phys. 17, 073023 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Claudia M. Carvalho.

Additional information

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjb/e2019-90571-6 .

Electronic supplementary material

Supplementary data

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, F.L.A., Alves, H.W.L., Sato, F. et al. DFT calculations on the structural and electronic properties of vacancy effects in the silicon nanowires. Eur. Phys. J. B 92, 66 (2019). https://doi.org/10.1140/epjb/e2019-90571-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90571-6

Keywords

Navigation