Skip to main content
Log in

Quantum Monte Carlo study of the S4 symmetric microscopic model for iron-based superconductors

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The S4 symmetric microscopic model with two iso-spin components has been studied via constrained-path quantum Monte Carlo simulation. Our results demonstrate a stable (π, 0) or (0, π) magnetic order which is significantly enhanced on increasing both the Coulomb repulsion U and Hund’s coupling strength J. Also, our simulation indicates that the magnetic order tends to be in an orthomagnetic state, in which the nearest-neighbour magnetic moment are orthogonal to each other, rather than in a collinear antiferromagnetic order. Interestingly, when the system is doped away from half filling, the magnetic order is obviously elevated in the low doping density, and then significantly suppressed when more electrons are introduced. Meanwhile, we find that an A1gs±-wave pairing dominates all the singlet nearest-neighbour pairings, and is significantly enhanced by electron doping.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.I. Mazin, D.J. Singh, M.D. Johannes, M.H. Du, Phys. Rev. Lett. 101, 057003 (2008)

    Article  ADS  Google Scholar 

  2. A.V. Chubukov, M.G. Vavilov, A.B. Vorontsov, Phys. Rev. B 80, 140515 (2009)

    Article  ADS  Google Scholar 

  3. K. Kuroki, S. Onari, R. Arita, H. Usui, Y. Tanaka, H. Kontani, H. Aoki, Phys. Rev. Lett. 101, 087004 (2008)

    Article  ADS  Google Scholar 

  4. S. Graser, T.A. Maier, P.J. Hirschfeld, D.J. Scalapino, New J. Phys. 11, 025016 (2009)

    Article  ADS  Google Scholar 

  5. P. Lee, X.-G. Wen, Phys. Rev. B 78, 144517 (2008)

    Article  ADS  Google Scholar 

  6. P.M.R. Brydon, M. Daghofer, C. Timm, J. Van den Beek, Phys. Rev. B 83, 060501 (2011)

    Article  ADS  Google Scholar 

  7. S. Raghu, X.-L. Qi, C.-X. Liu, D.J. Scalapino, S.-C. Zhang, Phys. Rev. B 77, 220503 (2008)

    Article  ADS  Google Scholar 

  8. M. Daghofer, A. Nicholson, A. Moreo, E. Dagotto, Phys. Rev. B 81, 014511 (2010)

    Article  ADS  Google Scholar 

  9. D. Johnston, Adv. Phys. 59, 803 (2010)

    Article  ADS  Google Scholar 

  10. J. Hu, N. Hao, Phys. Rev. X 2, 021009 (2012)

    Google Scholar 

  11. T. Ma, H.Q. Lin, J. Hu, Phys. Rev. Lett. 110, 107002 (2013)

    Article  ADS  Google Scholar 

  12. Y. Wu, G. Liu, T. Ma, Europhys. Lett. 104, 27013 (2013)

    Article  ADS  Google Scholar 

  13. G.-K. Liu, Z.-B. Huang, Y.-J. Wang, J. Phys.: Condens. Matter 26, 325601 (2014)

    Google Scholar 

  14. G. Liu, N. Kaushal, S. Li, C.B. Bishop, Y. Wang, S. Johnston, G. Alvarez, A. Moreo, E. Dagotto, Phys. Rev. E 93, 063313 (2016)

    Article  ADS  Google Scholar 

  15. A. Moreo, M. Daghofer, A. Nicholson, E. Dagotto, Phys. Rev. B 80, 104507 (2009)

    Article  ADS  Google Scholar 

  16. A. Nicholson, W. Ge, J. Riera, M. Daghofer, A. Moreo, E. Dagotto, Phys. Rev. B 85, 024532 (2012)

    Article  ADS  Google Scholar 

  17. M. Daghofer, A. Moreo, J.A. Riera, E. Arrigoni, D.J. Scalapino, E. Dagotto, Phys. Rev. Lett. 101, 237004 (2008)

    Article  ADS  Google Scholar 

  18. N. Hao, Y. Wang, J. Hu, Europhys. Lett. 104, 57007 (2013)

    Article  ADS  Google Scholar 

  19. J. Hu, J. Phys.: Conf. Ser. 449, 012017 (2013)

    Google Scholar 

  20. E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344, 1 (2001)

    Article  ADS  Google Scholar 

  21. S. Zhang, J. Carlson, J.E. Gubernatis, Phys. Rev. B 55, 7464 (1997)

    Article  ADS  Google Scholar 

  22. S. Zhang, J. Carlson, J.E. Gubernatis, Phys. Rev. Lett. 78, 4486 (1997)

    Article  ADS  Google Scholar 

  23. J.E. Hirsch, Phys. Rev. B 28, 4059 (1983)

    Article  ADS  Google Scholar 

  24. S. Sakai, R. Arita, H. Aoki, Phys. Rev. B 70, 172504 (2004)

    Article  ADS  Google Scholar 

  25. A. Moreo, M. Daghofer, J.A. Riera, E. Dagotto, Phys. Rev. B 79, 134502 (2009)

    Article  ADS  Google Scholar 

  26. Y. Wan, Q.-H. Wang, Europhys. Lett. 85, 57007 (2009)

    Article  ADS  Google Scholar 

  27. J. Lorenzana, G. Seibold, C. Ortix, M. Grilli, Phys. Rev. Lett. 101, 186402 (2008)

    Article  ADS  Google Scholar 

  28. P. Dai, J. Hu, E. Dagotto, Nat. Phys. 8, 709 (2012)

    Article  Google Scholar 

  29. E. Berg, S.A. Kivelson, D.J. Scalapino, Phys. Rev. B 81, 172504 (2010)

    Article  ADS  Google Scholar 

  30. Z.B. Huang, H.Q. Lin, J.E. Gubernatis, Phys. Rev. B 63, 115112 (2001)

    Article  ADS  Google Scholar 

  31. Z.B. Huang, H.Q. Lin, J.E. Gubernatis, Phys. Rev. B 64, 205101 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangkun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Huang, ZB. & Wang, YJ. Quantum Monte Carlo study of the S4 symmetric microscopic model for iron-based superconductors. Eur. Phys. J. B 92, 42 (2019). https://doi.org/10.1140/epjb/e2019-90472-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90472-8

Keywords

Navigation