Skip to main content
Log in

Partially ordered permutation entropies

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In the past decade, it has been shown through both theoretical and practical studies of permutation entropies that complexity of time series can be captured by order relations between numerical values. In this paper, we investigate a generalisation of permutation entropies in terms of the order structure for further understanding of their nature. To calculate conventional permutation entropies of time series, one needs to assume a total order on the alphabet. We generalise this to an arbitrary partial order; that is, the alphabet is assumed to be a partially ordered set, and we introduce partially ordered permutation entropies. The relationship between entropies and their partial-order analogues for discrete-time finite-alphabet stationary stochastic processes is theoretically studied. We will show that the entropy rate and its partial-order analogues are equal without restriction, whereas equalities between excess entropy and partial-order analogues depend on asymmetry of the order structure of the alphabet. As all finite totally ordered sets are asymmetric, our results explain one reason why conventional permutation entropies are so effective.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bandt, B. Pompe, Phys. Rev. Lett. 88, 174102 (2002)

    Article  ADS  Google Scholar 

  2. J.M. Amigó, Permutation Complexity in Dynamical Systems (Springer-Verlag, Berlin, Heidelberg, 2010)

  3. J.M. Amigó, K. Keller, Eur. Phys. J. Special Topics 222, 263 (2013)

    Article  ADS  Google Scholar 

  4. M. Zanin, L. Zunino, O. Rosso, D. Papo, Entropy 14, 1553 (2012)

    Article  ADS  Google Scholar 

  5. J.M. Amigó, K. Keller, V.A. Unakafova, Philos. Trans. R. Soc. A 373, 20140091 (2015)

    Article  ADS  Google Scholar 

  6. K. Keller, T. Mangold, I. Stolz, J. Werner, Entropy 19, 134 (2017)

    Article  ADS  Google Scholar 

  7. J.M. Amigó, M.B. Kennel, L. Kocarev, Physica D 210, 77 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  8. J.M. Amigó, Physica D 241, 789 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  9. J.P. Crutchfield, D.P. Feldman, Chaos 15, 25 (2003)

    Article  ADS  Google Scholar 

  10. T. Schreiber, Phys. Rev. Lett. 85, 461 (2000)

    Article  ADS  Google Scholar 

  11. M. Staniek, K. Lehnertz, Phys. Rev. Lett. 100, 158101 (2008)

    Article  ADS  Google Scholar 

  12. T. Haruna, K. Nakajima, Physica D 240, 1370 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  13. T. Haruna, K. Nakajima, Eur. Phys. J. B 86, 230 (2013)

    Article  ADS  Google Scholar 

  14. T. Haruna, K. Nakajima, Entropy 15, 3910 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  15. T. Haruna, K. Nakajima, Eur. Phys. J. Special Topics 222, 383 (2013)

    Article  ADS  Google Scholar 

  16. T. Haruna, K. Nakajima, Int. J. Comput. Ant. Syst. 26, 197 (2014)

    Google Scholar 

  17. R. Monetti, W. Bunk, T. Aschenbernner, F. Jamitzky, Phys. Rev. E 79, 046207 (2009)

    Article  ADS  Google Scholar 

  18. J.M. Amigó, R. Monetti, T. Aschenbernner, W. Bunk, Chaos 22, 013105 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  19. R. Monetti, W. Bunk, T. Aschenbernner, S. Springer, J.M. Amigó, Phys. Rev. E 88, 022911 (2013)

    Article  ADS  Google Scholar 

  20. J.M. Amigó, T. Aschenbernner, W. Bunk, R. Monetti, Inf. Sci. 278, 298 (2014)

    Article  Google Scholar 

  21. C. Bian, C. Qin, Q.D.Y. Ma, Q. Shen, Phys. Rev. E 85, 021906 (2012)

    Article  ADS  Google Scholar 

  22. T. Haruna, Physica D 388, 40 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  23. T.M. Cover, J.A. Thomas, Elements of Information Theory (John Wiley & Sons, Inc., NY, 1991)

  24. P. Grassberger, Int. J. Theor. Phys. 25, 907 (1986)

    Article  Google Scholar 

  25. R. Shaw, The Dripping Faucet as a Model Chaotic System (Aerial Press, Santa Cruz, California, 1984)

  26. W. Bialek, I. Nemenman, N. Tishby, Neural Comput. 13, 2409 (2001)

    Article  Google Scholar 

  27. W. Li, Complex Syst. 5, 381 (1991)

    MathSciNet  Google Scholar 

  28. D.V. Arnold, Complex Syst. 10, 143 (1996)

    Google Scholar 

  29. B.S.W. Schröder, Ordered Sets: An Introduction (Springer Science+Business Media, New York, 2003)

  30. R.B. Ash, Information Theory (Interscience Publishers, NY, 1965)

  31. B.D.O. Anderson, Math. Control Signals Syst. 12, 80 (1999)

    Article  Google Scholar 

  32. P. Walters, An Introduction to Ergodic Theory (Springer-Verlag, New York, 1982)

  33. D. Kugiumtzis, J. Nonlinear Syst. Appl. 3, 73 (2012)

    Google Scholar 

  34. B. Pompe, J. Runge, Phys. Rev. E 83, 051122 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taichi Haruna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haruna, T. Partially ordered permutation entropies. Eur. Phys. J. B 92, 81 (2019). https://doi.org/10.1140/epjb/e2019-90422-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90422-6

Keywords

Navigation