Skip to main content
Log in

Electronic and phonon structure of nickel hydroxide: first-principles calculation study

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We carried out a complete study (magnetic, electronic, lattice dynamic, and point defects) of the β-nickel hydroxide (β-Ni(OH)2) from first-principles calculations based on density functional theory. It is found that both of the magnetic ground state and band structure of β-Ni(OH)2 are strongly dependent on the correlation effect of Ni d-electrons. Experimental founded antiferromagnetic ground state with spin coupling along c direction has been confirmed by DFT+U method, and the predicated band structure shows a direct band gap about 3.5 eV with the highest occupied valence and lowest occupied bands mainly composed by O p-electron and Ni d-electron. Negative longitude acoustic phonon frequency around K point has been found, which is originated from the weak OH bond. High frequency localized vibration of hydrogen atom makes it easy to break away, and so form a vacancy, in agreement with the prediction that H+ vacancy has the lowest formation energy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Szytula, A. Murasik, M. Balanda, Phys. Stat. Solidi B 43, 125 (1971)

    Article  ADS  Google Scholar 

  2. T.A. Edison, Google Patents, 1904

  3. E. Jungner, German Patent 163, 170 (1901)

    Google Scholar 

  4. F. Cheng, J. Liang, Z. Tao, J. Chen, Adv. Mater. 23, 1695 (2011)

    Article  Google Scholar 

  5. D.S. Hall, D.J. Lockwood, C. Bock, B.R. MacDougall, Proc. Royal Soc. A: Math. Phys. Eng. Sci. 471, 20140792 (2015)

    Article  Google Scholar 

  6. M. Gong, H. Dai, Nano Res. 8, 23 (2015)

    Article  Google Scholar 

  7. J. Ran, J. Yu, M. Jaroniec, Green Chem. 13, 2708 (2011)

    Article  Google Scholar 

  8. J. Yu, Y. Hai, B. Cheng, J. Phys. Chem. C 115, 4953 (2011)

    Article  Google Scholar 

  9. S.I. Cordoba-Torresi, C. Gabrielli, A. Hugot-Le Goff, R. Torresi, J. Electrochem. Soc. 138, 1548 (1991)

    Article  Google Scholar 

  10. P.K. Sharma, M.C.A. Fantini, A. Gorenstein, Solid State Ionics 113–115, 457 (1998)

    Article  Google Scholar 

  11. B. Cheng, Y. Le, W. Cai, J. Yu, J. Hazard. Mater. 185, 889 (2011)

    Article  ADS  Google Scholar 

  12. M. Aghazadeh, M. Ghaemi, B. Sabour, S. Dalvand, J. Solid State Electrochem. 18, 1569 (2014)

    Article  Google Scholar 

  13. J.-C. Chen, C.-T. Hsu, C.-C. Hu, J. Power Sources 253, 205 (2014)

    Article  ADS  Google Scholar 

  14. H. Cheng, A.D. Su, S. Li, S.T. Nguyen, L. Lu, C.Y.H. Lim, H.M. Duong, Chem. Phys. Lett. 601, 168 (2014)

    Article  ADS  Google Scholar 

  15. X. Ma, J. Liu, C. Liang, X. Gong, R. Che, J. Mater. Chem. A 2, 12692 (2014)

    Article  Google Scholar 

  16. H. Manzano, A.N. Enyashin, J.S. Dolado, A. Ayuela, J. Frenzel, G. Seifert, Adv. Mater. 24, 3239 (2012)

    Article  Google Scholar 

  17. B. Ni, H. Liu, P.-P. Wang, J. He, X. Wang, Nat. Commun. 6, 8756 (2015)

    Article  ADS  Google Scholar 

  18. L. Zhuo, J. Ge, L. Cao, B. Tang, Cryst. Growth Des. 9, 1 (2009)

    Article  Google Scholar 

  19. H. Bode, K. Dehmelt, J. Witte, Electrochim. Acta 11, 1079 (1966)

    Article  Google Scholar 

  20. R. Barnard, C.F. Randell, F.L. Tye, J. Appl. Electrochem. 10, 109 (1980)

    Article  Google Scholar 

  21. M. Dixit, P.V. Kamath, J. Gopalakrishnan, J. Electrochem. Soc. 146, 79 (1999)

    Article  Google Scholar 

  22. F.P. Kober, J. Electrochem. Soc. 112, 1064 (1965)

    Article  Google Scholar 

  23. F.P. Kober, J. Electrochem. Soc. 114, 215 (1967)

    Article  Google Scholar 

  24. K. Pandya, W. O’grady, D. Corrigan, J. McBreen, R. Hoffman, J. Phys. Chem. 94, 21 (1990)

    Article  Google Scholar 

  25. C. Johnston, P.R. Graves, Appl. Spectr. 44, 105 (1990)

    Article  ADS  Google Scholar 

  26. M.C. Bernard, M. Keddam, H. Takenouti, P. Bernard, S. Sényarich, J. Electrochem. Soc. 143, 2447 (1996)

    Article  Google Scholar 

  27. S. Deabate, F. Fourgeot, F. Henn, J. Power Sources 87, 125 (2000)

    Article  ADS  Google Scholar 

  28. C. Murli, S.M. Sharma, S.K. Kulshreshtha, S.K. Sikka, Physica B 307, 111 (2001)

    Article  ADS  Google Scholar 

  29. J.L. Bantignies, S. Deabate, A. Righi, S. Rols, P. Hermet, J.L. Sauvajol, F. Henn, J. Phys. Chem. C 112, 2193 (2008)

    Article  Google Scholar 

  30. P. Hermet, L. Gourrier, J.L. Bantignies, D. Ravot, T. Michel, S. Deabate, P. Boulet, F. Henn, Phys. Rev. B 84, 235211 (2011)

    Article  ADS  Google Scholar 

  31. U.M. Patil, K.V. Gurav, V.J. Fulari, C.D. Lokhande, O.S. Joo, J. Power Sources 188, 338 (2009)

    Article  ADS  Google Scholar 

  32. M.K. Carpenter, D.A. Corrigan, J. Electrochem. Soc. 136, 1022 (1989)

    Article  Google Scholar 

  33. A.J. Tkalych, K. Yu, E.A. Carter, J. Phys. Chem. C 119, 24315 (2015)

    Article  Google Scholar 

  34. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  35. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  36. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  37. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  38. J. Klimeš, D.R. Bowler, A. Michaelides, Phys. Rev. B 83, 195131 (2011)

    Article  ADS  Google Scholar 

  39. K. Jiří, R.B. David, M. Angelos, J. Phys.: Condens. Matter 22, 022201 (2010)

    Google Scholar 

  40. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998)

    Article  ADS  Google Scholar 

  41. A.D. Doyle, M. Bajdich, A. Vojvodic, Catal. Lett. 147, 1533 (2017)

    Article  Google Scholar 

  42. A.J. Tkalych, H.L. Zhuang, E.A. Carter, ACS Catal. 7, 5329 (2017)

    Article  Google Scholar 

  43. A. Togo, I. Tanaka, Scr. Mater. 108, 1 (2015)

    Article  Google Scholar 

  44. T. Enoki, I. Tsujikawa, J. Phys. Soc. Jpn. 45, 1515 (1978)

    Article  ADS  Google Scholar 

  45. C. Marini et al., High Pressure Res. 37, 1 (2017)

    Article  ADS  Google Scholar 

  46. A. Audemer, A. Delahaye, R. Farhi, N. Sac-Epée, J.-M. Tarascon, J. Electrochem. Soc. 144, 2614 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjiang Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Song, C. Electronic and phonon structure of nickel hydroxide: first-principles calculation study. Eur. Phys. J. B 92, 37 (2019). https://doi.org/10.1140/epjb/e2019-90369-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90369-6

Keywords

Navigation