Skip to main content
Log in

Spin transport and spin pump in graphene-like materials: effects of tilted Dirac cone

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study spin transport phenomena in two-dimensional graphene-like materials in the presence of arbitrarily tilted Dirac cones. We use the generalized scattering approach to calculate the spin current in normal-ferromagnetic-normal (N-F-N) junction of the materials. The tilting of the Dirac cone strongly influence the transport properties and hence the spin conductance. We find a reversal of spin current polarization with smooth variation of the tilt parameter. We also study the spin current by the adiabatic precession of a doped ferromagnet on top of the material. It is shown that spin-mixing conductance and hence spin current become zero for a finite value of tilt. These findings provide an efficient way towards high controllability of spin transport of the ferromagnetic junction and can be very useful in the field of spintronics. Depending on the character of spin transport properties, it is also possible to measure the tilt of the Dirac cone.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hanson et al., Rev. Mod. Phys. 79, 1217 (2007)

    Article  ADS  Google Scholar 

  2. V. Garcia et al., Science 327, 1801 (2010)

    Article  Google Scholar 

  3. I. Zutic, J. Lee, Science 337, 307 (2012)

    Article  ADS  Google Scholar 

  4. T. Yokoyama, Phys. Rev. B 77, 073413 (2008)

    Article  ADS  Google Scholar 

  5. T. Yokoyama, J. Linder, Phys. Rev. B 83, 081418(R) (2011)

    Article  ADS  Google Scholar 

  6. Z. Rashidian et al., J. Magn. Magn. Mater. 424, 207 (2017)

    Article  ADS  Google Scholar 

  7. M.M. Grujic, M.Z. Tadic, F.M. Peeters, Phys. Rev. Lett. 113, 046601 (2014)

    Article  ADS  Google Scholar 

  8. F. Zhai, L. Yang, Appl. Phys. Lett. 98, 062101 (2011)

    Article  ADS  Google Scholar 

  9. Q.-P. Wu et al., Sci. Rep. 6, 21590 (2016)

    Article  ADS  Google Scholar 

  10. Y. Mohammadi, B.A. Nia, Superlat. Microstruct. 96, 259 (2016)

    Article  ADS  Google Scholar 

  11. L.B. Ho, T.N. Lan, J. Phys. D: Appl. Phys. 49, 37 (2016)

    Article  Google Scholar 

  12. M. Gotte, M. Joppe, T. Dahm, Sci. Rep. 6, 36070 (2016)

    Article  ADS  Google Scholar 

  13. Y. Ohno, D.K. Young, B. Beschoten, F. Matsukura, H. Ohno, D.D. Awschalom, Nature 402, 790 (1999)

    Article  ADS  Google Scholar 

  14. S. Modak, K. Sengupta, D. Sen, Phys. Rev. B 86, 205114 (2012)

    Article  ADS  Google Scholar 

  15. E.I. Rashba, Phys. Rev. B 62, 16267 (2000)

    Article  ADS  Google Scholar 

  16. F.J. Jedema, A.T. Filip, B.J. van Wess, Nature 410, 345 (2001)

    Article  ADS  Google Scholar 

  17. I. Zutic, J. Fabian, S.D. Sarma, Rev. Mod. Phys. 76, 323410 (2004)

    Article  Google Scholar 

  18. J. Sinova, D. Culcer, Q. Niu, N.A. Sinitsyn, T. Jungwirth, A.H. McDonald, Phys. Rev. Lett. 92, 126603 (2004)

    Article  ADS  Google Scholar 

  19. Y.K. Kato, R.C. Myres, A.C. Gossard, D.D. Awschalom, Science 306, 1910 (2004)

    Article  ADS  Google Scholar 

  20. J. Wunderlich, B. Kaestner, J. Sinova, T. Jungwirth, Phys. Rev. Lett. 94, 047204 (2005)

    Article  ADS  Google Scholar 

  21. Q. Zhang, K.S. Chan, Z. Lin, Appl. Phys. Lett. 98, 032106 (2011)

    Article  ADS  Google Scholar 

  22. Z. Tang et al., Phys. Rev. B 87, 140401(R) (2013)

    Article  ADS  Google Scholar 

  23. L.E.F.F. Torres, H.L. Calvo, C.G. Rocha, G. Cuniberti, Appl. Phys. Lett. 99, 092102 (2011)

    Article  ADS  Google Scholar 

  24. R.V. Mikhaylovskiy, E. Hendry, V.V. Kruglyak, Phys. Rev. B 82, 195446 (2010)

    Article  ADS  Google Scholar 

  25. M.A. Rahimi, A.G. Moghaddam, J. Phys. D: Appl. Phys. 48, 295004 (2015)

    Article  Google Scholar 

  26. T. Inoue, G.E.W. Bauer, K. Nomura, Phys. Rev. B 94, 205428 (2016)

    Article  ADS  Google Scholar 

  27. Y. Tsekovnyak, A. Brataas, G.E.W. Bauer, Phys. Rev. B 66, 224403 (2002)

    Article  ADS  Google Scholar 

  28. K. Lenz et al., Phys. Rev. B 69, 144422 (2004)

    Article  ADS  Google Scholar 

  29. K. Uchida, et al., Nat. Mater 9, 894 (2010)

    Article  ADS  Google Scholar 

  30. L.E.F. Foa Torres, V. Dal. Lago, E.S. Morell, Phys. Rev. B 93, 075438 (2016)

    Article  ADS  Google Scholar 

  31. M.O. Goerbig, J.-N. Fuchs, G. Montambaux, F. Piechon, Phys. Rev. B 78, 045415 (2008)

    Article  ADS  Google Scholar 

  32. A.D. Zabolotskiy, Y.E. Lozovik, Phys. Rev. B 94, 165403 (2016)

    Article  ADS  Google Scholar 

  33. A.L. Bezanilla, P.B. Littlewood, Phys. Rev. B 93, 241405(R) (2016)

    Article  ADS  Google Scholar 

  34. A. Varykhalov et al., Phys. Rev. B 95, 245421 (2017)

    Article  ADS  Google Scholar 

  35. Y. Xu, F. Zhang, C. Zhang, Phys. Rev. Lett. 115, 265304 (2015)

    Article  ADS  Google Scholar 

  36. L. Pauling, Proc. Natl. Acad. Sci. U.S.A. 56, 1646 (1966)

    Article  ADS  Google Scholar 

  37. G.G. Pyrialakos, N.S. Nye, N.V. Kantartzis, D.N. Christodouliders, Phys. Rev. Lett. 119, 113901 (2017)

    Article  ADS  Google Scholar 

  38. S.-L. Zhu, B. Wang, L.-M. Duan, Phys. Rev. Lett. 98, 260402 (2007)

    Article  ADS  Google Scholar 

  39. V.H. Nguyen, J.-C. Charlier, Phys. Rev. B 97, 235113 (2018)

    Article  ADS  Google Scholar 

  40. M. Trescher, B. Sbierski, P.W. Brouwer, E.J. Bergholtz, Phys. Rev. B 91, 115135 (2015)

    Article  ADS  Google Scholar 

  41. J.P. Carbotte, Phys. Rev. B 94, 165111 (2016)

    Article  ADS  Google Scholar 

  42. S. Verma, A. Mawrie, T.K. Ghosh, Phys. Rev. B 96, 155418 (2017)

    Article  ADS  Google Scholar 

  43. J. Sari, C. Toke, M. Goerbig, Phys. Rev. B 90, 155446 (2014)

    Article  ADS  Google Scholar 

  44. M. Hirata et al., Nat. Commun. 7, 12666 (2016)

    Article  ADS  Google Scholar 

  45. R. Mohammadkhani, B. Abdollahipour, M. Alidoust, Europhys. Lett. 11, 67005 (2015)

    Article  ADS  Google Scholar 

  46. R. Beiranvand, H. Hamzehpour, M. Alidoust, Phys. Rev. B 94, 125415 (2016)

    Article  ADS  Google Scholar 

  47. M. Alidoust, J. Linder, Phys. Rev. B 84, 035407 (2011)

    Article  ADS  Google Scholar 

  48. D. Sinha, S. Kar, Curr. Appl. Phys. 18, 1087 (2018)

    Article  ADS  Google Scholar 

  49. Z.K. Liu et al., Nat. Mater. 3, 677 (2014)

    Article  ADS  Google Scholar 

  50. Z.K. Liu et al., Science 343, 864 (2014)

    Article  ADS  Google Scholar 

  51. Z. Hou, Q.-F. Sun, Phys. Rev. B 96, 155305 (2017)

    Article  ADS  Google Scholar 

  52. R.D. Hills, A. Kusmartseva, F.V. Kusmartsev, Phys. Rev. B 95, 214103 (2017)

    Article  ADS  Google Scholar 

  53. J. Baringhau et al., Nature 506, 349 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Sinha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, D. Spin transport and spin pump in graphene-like materials: effects of tilted Dirac cone. Eur. Phys. J. B 92, 61 (2019). https://doi.org/10.1140/epjb/e2019-90332-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90332-7

Keywords

Navigation