Skip to main content
Log in

Influence of mechanical tensile and compression tests under high strain rate on structural properties of copper monatomic metallic glass

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

This paper aims to investigate the structural properties of Cu-monatomic metallic glass, and to elucidate the effect of mechanical tensile and compression tests with high strain rate on these properties. This work is performed by using molecular dynamics simulations combined with embedded atom method. The structure parameters such as radial distribution function, Voronoi Tessellation and Common neighbor analysis have been used to characterize and investigate the local structure in the Cu-monatomic metallic glass. Our numerical results show that, the most dominant structures are the distorted icosahedra ⟨0,1,10,2⟩ and ⟨0,2,8,4⟩ for this specific system. These two structures are more higher than the full icosahedra motif ⟨0,0,12,0⟩ which presents, generally, the high percentage for multi-component and for some monatomic metallic glasses. In addition, we have found that the second peak splitting in the partial distribution function of Cu metallic glass is caused essentially by the icosahedra-like polyhedron and not only by the full icosahedra. On the other hand, we have shown that the mechanical tests strongly influence these local structures. In fact, tensile and compression tests lead to reduce the importance of the short range order by decreasing the icosahedra and icosahedra-like fractions. However, these mechanical effects do not alter significantly ⟨0,3,6,4⟩ clusters, which maintain almost the same percentage during the mechanical testing. Moreover, comparison between compression and tensile tests with regard to the mechanical behavior and how it can be altered by the strain rate is done. Implications of these results are briefly discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Yang, G.Q. Guo, L.Y. Chen, S.H. Wei, J.Z. Jiang, X.D. Wang, Scr. Mater. 63, 879 (2010)

    Article  ADS  Google Scholar 

  2. J. Mo, H. Liu, Y. Zhang, M. Wang, L. Zhang, B. Liu, W. Yang, J. Non. Cryst. Solids 464, 1 (2017)

    Article  ADS  Google Scholar 

  3. W.H. Wang, C. Dong, C.H. Shek, Mater. Sci. Eng. R Reports 44, 45 (2004)

    Article  Google Scholar 

  4. I. Vincze, D.S. Boudreaux, M. Tegze, Phys. Rev. B 19, 10 (1979)

    Article  Google Scholar 

  5. B.S. Lou, Y.C. Yang, J.W. Lee, L.T. Chen, Surf. Coatings Technol. 320, 512 (2016)

    Article  Google Scholar 

  6. Z.D. Sha, L.C. He, S. Xu, Q.X. Pei, Z.S. Liu, Y.W. Zhang, T.J. Wang, Scr. Mater. 93, 36 (2014)

    Article  Google Scholar 

  7. S. Gravier, J.J. Blandin, M. Suéry, Mater. Sci. Eng. A 527, 4197 (2010)

    Article  Google Scholar 

  8. J. Eckert, J. Das, S. Pauly, C. Duhamel, J. Mater. Res. 22, 285 (2007)

    Article  ADS  Google Scholar 

  9. R.B. Diegle, J. Non. Cryst. Solids 62, 601 (1984)

    Article  ADS  Google Scholar 

  10. P. Ramasamy, M. Stoica, S. Bera, M. Calin, J. Eckert, J. Alloys Compd. 707, 78 (2017)

    Article  Google Scholar 

  11. M. Zhu, Y. Fa, Z. Jian, L. Yao, C. Jin, J. Xu, R. Nan, F. Chang, Trans. Nonferrous Met. Soc. China 27, 857 (2017)

    Article  Google Scholar 

  12. Y.B. Wang, H.F. Li, Y. Cheng, Y.F. Zheng, L.Q. Ruan, Mater. Sci. Eng. C 33, 3489 (2013)

    Article  Google Scholar 

  13. M. Tahiri, S. Trady, A. Hasnaoui, M. Mazroui, K. Saadouni, K. Sbiaai, Mod. Phys. Lett. B 30, 1650170 (2016)

    Article  ADS  Google Scholar 

  14. X. Gu, W. Hao, J. Wang, H. Kou, J. Li, Rare Met. Mater. Eng. 39, 1693 (2010)

    Article  Google Scholar 

  15. L. Zhong, J. Wang, H. Sheng, Z. Zhang, S.X. Mao, Nature 512, 177 (2014)

    Article  ADS  Google Scholar 

  16. S. Sengul, M. Celtek, U. Domekeli, Vacuum 136, 20 (2017)

    Article  ADS  Google Scholar 

  17. J.C. Zhang, C. Chen, Q.X. Pei, Q. Wan, W.X. Zhang, Z.D. Sha, Mater. Des. 77, 1 (2015)

    Article  Google Scholar 

  18. X. Shi, J. Zhang, M. Sun, Mater. Lett. 157, 180 (2015)

    Article  Google Scholar 

  19. Y. Jiang, L. Sun, Q. Wu, K. Qiu, J. Non. Cryst. Solids 459, 26 (2017)

    Article  ADS  Google Scholar 

  20. Z. Ning, W. Liang, Z. Kang, H. Sun, J. Sun, Mater. Sci. Eng. A 697, 233 (2017)

    Article  Google Scholar 

  21. X. Di Wang, R.T. Qu, Z.Q. Liu, Z.F. Zhang, Mater. Sci. Eng. A 696, 267 (2017)

    Article  Google Scholar 

  22. J. Schroers, W.L. Johnson, Phys. Rev. Lett. 93, 20 (2004)

    Article  Google Scholar 

  23. J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, J. Eckert, Phys. Rev. Lett. 94, 1 (2005)

    Article  Google Scholar 

  24. C. Fan, R.T. Ott, T.C. Hufnagel, Appl. Phys. Lett. 81, 1020 (2002)

    Article  ADS  Google Scholar 

  25. F. Szuecs, C.P. Kim, W.L. Johnson, Acta. Mater. 49, 1507 (2001)

    Article  Google Scholar 

  26. L. Wang, X. Li, M. Gao, X. Zeng, J. Manuf. Process. 27, 207 (2017)

    Article  Google Scholar 

  27. M. Roger et al., Biochim. Biophys. Acta 1858, 351 (2017)

    Article  Google Scholar 

  28. J. Zhang, C. Liu, Y. Shu, J. Fan, Appl. Surf. Sci. 261, 690 (2012)

    Article  ADS  Google Scholar 

  29. L.C. Liu, J.L. Kuo, Comput. Phys. Commun. 189, 119 (2015)

    Article  ADS  Google Scholar 

  30. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 15012 (2010)

    Article  ADS  Google Scholar 

  31. G. Li, M.R. von Spakovsky, Energy 115, 498 (2016)

    Article  Google Scholar 

  32. N.E. Hamilton, R. Mahjoub, K.J. Laws, M. Ferry, Comput. Mater. Sci. 130, 130 (2017)

    Article  Google Scholar 

  33. S. (Johnathan) Tan, L. Prasetyo, Y. Zeng, D.D. Do, D. Nicholson, Chem. Eng. J. 316, 243 (2017)

    Article  Google Scholar 

  34. M.I. Mendelev, M.J. Kramer, C.A. Becker, M. Asta, Philos. Mag. 88, 1723 (2008)

    Article  ADS  Google Scholar 

  35. S. Trady, A. Hasnaoui, M. Mazroui, J. Non. Cryst. Solids 468, 27 (2017)

    Article  ADS  Google Scholar 

  36. K. Vijay Reddy, S. Pal, J. Non. Cryst. Solids 471, 243 (2017)

    Article  ADS  Google Scholar 

  37. X. Zhou, H. Zhou, X. Li, C. Chen, J. Mech. Phys. Solids 84, 130 (2015)

    Article  ADS  Google Scholar 

  38. Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Phys. Rev. B 63, 2241061 (2001)

    Article  Google Scholar 

  39. S. Trady, M. Mazroui, A. Hasnaoui, K. Saadouni, J. Non. Cryst. Solids 443, 136 (2016)

    Article  ADS  Google Scholar 

  40. R.S. Liu, D.W. Qi, S. Wang, Phys. Rev. B 45, 451 (1992)

    Article  ADS  Google Scholar 

  41. B.W. van de Waal, J. Non. Cryst. Solids 189, 118 (1995)

    Article  ADS  Google Scholar 

  42. T. Fujiwara, H. Chen, Y. Waseda, J. Phys. F Met. Phys. 11, 1327 (1981)

    Article  ADS  Google Scholar 

  43. S.P. Pan, J.Y. Qin, W.M. Wang, T.K. Gu, Phys. Rev. B 84, 1 (2011)

    Google Scholar 

  44. A. Radhi, K. Behdinan, Comput. Mater. Sci. 126, 182 (2017)

    Article  Google Scholar 

  45. T. Fukunaga, K. Itoh, T. Otomo, K. Mori, M. Sugiyama, H. Kato, M. Hasegawa, A. Hirata, Y. Hirotsu, A.C. Hannon, Mater. Trans. 48, 1698 (2007)

    Article  Google Scholar 

  46. J. Ding, Y. Cheng, E. Ma, Acta Mater. 69, 343 (2014)

    Article  Google Scholar 

  47. Y. Xu, M. Yu, R. Xu, X. Wang, Z. Wang, Y. Liang, J. Lin, Metals 6, 1 (2016)

    Google Scholar 

  48. M. Lee, C. Lee, K. Lee, E. Ma, J. Lee, Acta Mater. 59, 159 (2011)

    Article  Google Scholar 

  49. A. Foroughi, R. Tavakoli, H. Aashuri, J. Non. Cryst. Solids 432, 334 (2015)

    Article  ADS  Google Scholar 

  50. S. Trady, A. Hasnaoui, M. Mazroui, J. Non. Cryst. Solids 468, 27 (2017)

    Article  ADS  Google Scholar 

  51. C. Zhong et al., Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  52. P. Gupta, N. Yedla, Proc. Eng. 184, 631 (2017)

    Article  Google Scholar 

  53. M.A. Popescu, J. Non. Cryst. Solids 169, 155 (1994)

    Article  ADS  Google Scholar 

  54. G. Li, Y.C. Li, Q. Jing, T. Xu, L. Qi, M.Z. Ma, J. Liu, T. Zhang, R.P. Liu, Mater. Chem. Phys. 113, 937 (2009)

    Article  Google Scholar 

  55. B.-J. Lee, J.C. Lee, Y.-C. Kim, S.H. Lee, Met. Mater. Int. 10, 467 (2004)

    Article  Google Scholar 

  56. W. Dmowski, Y. Yokoyama, A. Chuang, Y. Ren, M. Umemoto, K. Tsuchiya, A. Inoue, T. Egami, Acta Mater. 58, 429 (2010)

    Article  Google Scholar 

  57. K.W. Park, E. Fleury, H.K. Seok, Y.C. Kim, Intermetallics 19, 1168 (2011)

    Article  Google Scholar 

  58. L. Sun, W. Wang, L. Wang, Phys. Rev. B 68, 8 (2003)

    Google Scholar 

  59. P. Wang, H. Li, L. Yang, Metals (Basel) 7, 444 (2017)

    Article  Google Scholar 

  60. Y. Huang, J. Shen, Y. Sun, J. Sun, J.J.J. Chen, J. Alloys Compd. 2017, 23 (2010)

    Google Scholar 

  61. Q. Zhang, Q.-K. Li, M. Li, Sci. Rep. 7, 41365 (2017)

    Article  ADS  Google Scholar 

  62. J. Tan, C.J. Li, Y.H. Jiang, R. Zhou, J. Eckert, PRICM 2013, 3199 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaoutar Belouarda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belouarda, K., Trady, S., Saadouni, K. et al. Influence of mechanical tensile and compression tests under high strain rate on structural properties of copper monatomic metallic glass. Eur. Phys. J. B 92, 50 (2019). https://doi.org/10.1140/epjb/e2019-90331-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90331-8

Keywords

Navigation