Skip to main content
Log in

Thermodynamics properties of Bernal stacking multilayer graphene

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this work, we have investigated the thermodynaimcs properties of multilayer graphene with Bernal stacking in the extensive (shannon) and nonextensive (Tsallis) entropies. By using the energy spectrum, we calculate the entropy and the specific heat of multilayer graphene with Bernal stacking. The particular attention of this study is paid to the effect of temperature on these thermodynamic properties. The results show that the number of layers have an important effect on the curves and it can change the behavior of the Bernal stacking graphene. Also, it is found that the nonextensive parameter is an important factor for modeling the entropy and the specific heat for the multilayer graphene. According to the obtained results, the missing information in the multilayer graphene with Bernal stacking can be controlled by changing the system parameters. The outlines illustrates the power of Tsallis entropy in the realm of complex systems against the Shannon entropy and its associated statistical mechanics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    ADS  Google Scholar 

  2. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    ADS  Google Scholar 

  3. P.R. Wallace, Phys. Rev. 71, 622 (1947)

    ADS  Google Scholar 

  4. A.A. Balandin, Nat. Mater. 10, 569 (2011)

    ADS  Google Scholar 

  5. E. Pop, V. Varshney, A.K. Roy, MRS Bull. 37, 1273 (2012)

    Google Scholar 

  6. A. Alofi, G.P. Srivastava, Phys. Rev. B 87, 115421 (2013)

    ADS  Google Scholar 

  7. A.I. Rusanov, G.P. Srivastava, Surf. Sci. Rep. 69, 296 (2014)

    ADS  Google Scholar 

  8. N.A.H. Castro, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    ADS  Google Scholar 

  9. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    ADS  Google Scholar 

  10. S.S. Das, S. Adam, E.H. Hwang, E. Rossi, Rev. Mod. Phys. 83, 407 (2011)

    ADS  Google Scholar 

  11. D. Lv, Y. Ma, X.H. Luo, W. Jiang, F. Wang, Q. Li, Physica E 116, 113721 (2020)

    Google Scholar 

  12. T.M. Radchenko, V.A. Tatarenko, Physica E 42, 2047 (2010)

    ADS  Google Scholar 

  13. M.S. Xu, D. Fujita, J.H. Gao, N. Hanagata, ACS Nano 4, 2937 (2010)

    Google Scholar 

  14. J.D. Bernal, Proc. R. Soc. A. 106, 749 (1924)

    ADS  Google Scholar 

  15. T. Stauber, F. Guinea, M.A.H. Vozmediano, Phys. Rev. B 71, 041406 (2005)

    ADS  Google Scholar 

  16. L. Brown, R. Hovden, P. Huang, M. Wojcik, D.A. Muller, J. Park, Nano Lett. 12, 1609 (2012)

    ADS  Google Scholar 

  17. A. Molenda, I. Zasada, P. Maslanka, Physica E 107, 160 (2019)

    ADS  Google Scholar 

  18. O. Ustavytska, Y. Kurys, V. Koshechko, V. Pokhodenko, Nanoscale Res. Lett. 12, 175 (2017)

    ADS  Google Scholar 

  19. Ch.J. Kim, A. Sánchez-Castillo, Z. Ziegler, Y. Ogawa, C. Noguez, J. Park, Nat. Nanotechnol. 11, 520 (2016)

    ADS  Google Scholar 

  20. X. Li, Z. Qiao, J. Jung, Q. Niu, Phys. Rev. B 85, 201404 (2012)

    ADS  Google Scholar 

  21. K. Harigaya, J. Phys.: Condens. Matter 13, 1245 (2001)

    ADS  Google Scholar 

  22. J. Jung, F. Zhang, Z. Qiao, A.H. MacDonald, Phys. Rev. B 84, 075418 (2011)

    ADS  Google Scholar 

  23. J.A.C. Pérez, Physica E 80, 1 (2016)

    ADS  Google Scholar 

  24. R. Toral, Physica A 317, 209 (2003)

    ADS  MathSciNet  Google Scholar 

  25. R. Khordad, H.R. Rastegar Sedehi, Eur. Phys. J. Plus 131, 291 (2016)

    Google Scholar 

  26. E.M.F. Curado, F.D. Nobre, A. Plastino, Entropy 20, 940 (2018)

    ADS  Google Scholar 

  27. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    ADS  Google Scholar 

  28. M.L. Lyra, C. Tsallis, Phys. Rev. Lett. 80, 53 (1998)

    ADS  Google Scholar 

  29. A.R.R. Papa, C. Tsallis, Phys. Rev. E 57, 3923 (1998)

    ADS  Google Scholar 

  30. J.A.S. Lima, R. Silva, A.R. Plastino, Phys. Rev. Lett. 86, 2938 (2001)

    ADS  Google Scholar 

  31. O. Cybulski, V. Babin, R. Hołyst, Phys. Rev. E 71, 046130 (2005)

    ADS  MathSciNet  Google Scholar 

  32. C. Tsallis, Braz. J. Phys. 29, 1 (1999)

    ADS  Google Scholar 

  33. R. Botet, M. Ploszajczak, J.A. Gonzalez, Phys. Rev. E 65, R015103 (2002)

    ADS  Google Scholar 

  34. R. Khordad, H.R. Rastegar Sedehi, Eur. Phys. J. Plus 134, 133 (2019)

    Google Scholar 

  35. V. Santos, R.V. Maluf, C.A.S. Almeida, Ann. Phys. 349, 402 (2014)

    ADS  Google Scholar 

  36. M.M. Hawamdeh, M.K. Al-Sugheir, A.S. Sandouqa, H.B. Ghassib, Can. J. Phys. 95, 211 (2017)

    ADS  Google Scholar 

  37. D. Wang, Y. Liu, D. Sun, Q. Yuan, F. Ding, J. Phys. Chem. C 122, 3334 (2018)

    Google Scholar 

  38. M.I. Katsnelson,Graphene: Carbon in Two Dimensions (Cambridge University Press, New York, 2012)

  39. F. Guinea, A.H. Castro Neto, N.M.R. Peres, Phys. Rev. B 73, 245426 (2006)

    ADS  Google Scholar 

  40. E. McCann, V.I. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006)

    ADS  Google Scholar 

  41. I.M. Lifshitz, M.I. Kaganov, Sov. Phys. Usp. 2, 831 (1960)

    ADS  Google Scholar 

  42. I.M. Lifshitz, A.M. Kosevich, Sov. Phys. JETP 2, 636 (1956)

    Google Scholar 

  43. Z.Z. Alisultanov, L.S. Paixao, M.S. Reis, Appl. Phys. Lett. 105, 232406 (2014)

    ADS  Google Scholar 

  44. Z.Z. Alisultanov, M.S. Reis, Solid State Commun. 206, 17 (2015)

    Google Scholar 

  45. C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261, 534 (1998)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid-Reza Rastegar-Sedehi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastegar-Sedehi, HR. Thermodynamics properties of Bernal stacking multilayer graphene. Eur. Phys. J. B 93, 14 (2020). https://doi.org/10.1140/epjb/e2019-100541-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100541-5

Keywords

Navigation