Skip to main content
Log in

Multifractality and the distribution of the Kondo temperature at the Anderson transition

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Using numerical simulations, we investigate the distribution of Kondo temperatures at the Anderson transition. In agreement with previous work, we find that the distribution has a long tail at small Kondo temperatures. Recently, an approximation for the tail of the distribution was derived analytically. This approximation takes into account the multifractal distribution of the wavefunction amplitudes (in the parabolic approximation), and power law correlations between wave function intensities, at the Anderson transition. It was predicted that the distribution of Kondo temperatures has a power law tail with a universal exponent. Here, we attempt to check that this prediction holds in a numerical simulation of Anderson’s model of localisation in three dimensions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kondo, Progr. Theor. Phys. 32, 37 (1964)

    Article  ADS  Google Scholar 

  2. K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975)

    Article  ADS  Google Scholar 

  3. Y. Nagaoka, Phys. Rev. A 138, 1112 (1965)

    Article  ADS  Google Scholar 

  4. H. Suhl, Phys. Rev. A 138, 515 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  5. V. Dobrosavljević, T.R. Kirkpatrick, B.G. Kotliar, Phys. Rev. Lett. 69, 1113 (1992)

    Article  ADS  Google Scholar 

  6. P.S. Cornaglia, D.R. Grempel, C.A. Balseiro, Phys. Rev. Lett. 96, 117209 (2006)

    Article  ADS  Google Scholar 

  7. S. Kettemann, E.R. Mucciolo, J. Exp. Theor. Phys. Lett. 83, 240 (2006)

    Article  Google Scholar 

  8. S. Kettemann, E.R. Mucciolo, I. Varga, K. Slevin, Phys. Rev. B 85, 115112 (2012)

    Article  ADS  Google Scholar 

  9. H.Y. Lee, S. Kettemann, Phys. Rev. B 89, 165109 (2014)

    Article  ADS  Google Scholar 

  10. B. Shapiro, Philos. Mag. B 56, 1031 (1987)

    Article  ADS  Google Scholar 

  11. K. Slevin, P. Markoš, T. Ohtsuki, Phys. Rev. Lett. 86, 3594 (2001)

    Article  ADS  Google Scholar 

  12. M.V. Feigel’man, L.B. Ioffe, V.E. Kravtsov, E.A. Yuzbashyan, Phys. Rev. Lett. 98, 027001 (2007)

    Article  ADS  Google Scholar 

  13. I.S. Burmistrov, I.V. Gornyi, A.D. Mirlin, Phys. Rev. Lett. 108, 017002 (2012)

    Article  ADS  Google Scholar 

  14. F. Evers, A.D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008)

    Article  ADS  Google Scholar 

  15. A. Rodriguez, L.J. Vasquez, R.A. Römer, Phys. Rev. B 78, 195107 (2008)

    Article  ADS  Google Scholar 

  16. L.J. Vasquez, A. Rodriguez, R.A. Römer, Phys. Rev. B 78, 195106 (2008)

    Article  ADS  Google Scholar 

  17. A. Rodriguez, L.J. Vasquez, R.A. Römer, Phys. Rev. Lett. 102, 106406 (2009)

    Article  ADS  Google Scholar 

  18. A. Rodriguez, L.J. Vasquez, K. Slevin, R.A. Römer, Phys. Rev. B 84, 134209 (2011)

    Article  ADS  Google Scholar 

  19. L. Ujfalusi, I. Varga, Phys. Rev. B 91, 184206 (2015)

    Article  ADS  Google Scholar 

  20. E. Cuevas, V.E. Kravtsov, Phys. Rev. B 76, 235119 (2007)

    Article  ADS  Google Scholar 

  21. S. Kettemann, E.R. Mucciolo, I. Varga, Phys. Rev. Lett. 103, 126401 (2009)

    Article  ADS  Google Scholar 

  22. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  23. K. Slevin, T. Ohtsuki, New J. Phys. 16, 015012 (2014)

    Article  ADS  Google Scholar 

  24. K. Slevin, T. Ohtsuki, J. Phys. Soc. Jpn. 87, 094703 (2018)

    Article  ADS  Google Scholar 

  25. A. Weisse, G. Wellein, A. Alvermann, H. Fehske, Rev. Mod. Phys. 78, 275 (2006)

    Article  ADS  Google Scholar 

  26. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling,Numerical recipes: the art of scientific computing, 3rd edn. (Cambridge University Press, Cambridge, UK/New York, 2007)

  27. A. Clauset, C.R. Shalizi, M.E.J. Newman, SIAM Rev. 51, 661 (2009)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Slevin.

Additional information

Contribution to the Topical Issue “Recent Advances in the Theory of Disordered Systems”, edited by Ferenc Iglói and Heiko Rieger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slevin, K., Kettemann, S. & Ohtsuki, T. Multifractality and the distribution of the Kondo temperature at the Anderson transition. Eur. Phys. J. B 92, 281 (2019). https://doi.org/10.1140/epjb/e2019-100478-1

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100478-1

Navigation