Skip to main content
Log in

One dimensional localization for arbitrary disorder correlations

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We evaluate the localization length of the wave solution of a random potential characterized by an arbitrary autocorrelation function. We go beyond the Born approximation to evaluate the localization length using a non-linear approximation and calculate all the correlators needed for the localization length expression. We compare our results with numerical results for the special case, where the autocorrelation decays quadratically with distance. We look at disorder ranging from weak to strong disorder, which shows excellent agreement. For the numerical simulation, we introduce a generic method to obtain a random potential with an arbitrary autocorrelation function. The correlated potential is obtained in terms of the convolution between a Wiener stochastic potential and a function of the correlation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Cutler, N. Mott, Phys. Rev. 181, 1336 (1969)

    ADS  Google Scholar 

  2. D. Thouless,Ill-Condensed Matter (North-Holland, Amsterdam, 1979)

  3. L. Berthier, G. Biroli, Rev. Mod. Phys. 83, 587 (2011)

    ADS  Google Scholar 

  4. J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, A. Aspect, Nature 453, 891 (2008)

    ADS  Google Scholar 

  5. G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, M. Inguscio, Nature 453, 895 (2008)

    ADS  Google Scholar 

  6. J. Elson, J. Rahn, J. Bennett, Appl. Opt. 22, 3207 (1983)

    ADS  Google Scholar 

  7. S. John, Phys. Rev. Lett. 58, 2486 (1987)

    ADS  Google Scholar 

  8. J. Topolancik, B. Ilic, F. Vollmer, Phys. Rev. Lett. 99, 253901 (2007)

    ADS  Google Scholar 

  9. M. Hilke, Phys. Rev. A 80, 063820 (2009)

    ADS  Google Scholar 

  10. S. Karbasi, R.J. Frazier, K.W. Koch, T. Hawkins, A.M. John Ballato, Nat. Commun. 5, 3362 (2014)

    ADS  Google Scholar 

  11. S.E. Skipetrov, Nat. Nanotechnol. 9, 335 (2014)

    ADS  Google Scholar 

  12. R. Weaver, Wave Motion 12, 129 (1990)

    Google Scholar 

  13. D. Basko, I. Aleiner, B. Altshuler, Ann. Phys. 321, 1126 (2006)

    ADS  Google Scholar 

  14. J.H. Bardarson, F. Pollmann, J.E. Moore, Phys. Rev. Lett. 109, 017202 (2012)

    ADS  Google Scholar 

  15. S. Fishman, D. Grempel, R. Prange, Phys. Rev. Lett. 49, 509 (1982)

    ADS  MathSciNet  Google Scholar 

  16. R. Brandenberger, W. Craig, Eur. Phys. J. C 72, 1881 (2012)

    ADS  Google Scholar 

  17. M. Hilke, Phys. Rev. B 78, 012204 (2008)

    ADS  Google Scholar 

  18. B. Huckestein, Rev. Mod. Phys. 67, 357 (1995)

    ADS  Google Scholar 

  19. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    ADS  Google Scholar 

  20. E. Abrahams, P. Anderson, D. Licciardello, T. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979)

    ADS  Google Scholar 

  21. H. Kunz, B. Souillard, Commun. Math. Phys. 78, 201 (1980)

    ADS  Google Scholar 

  22. J. Pendry, Adv. Phys. 43, 461 (1994)

    ADS  Google Scholar 

  23. H. Cao, Waves Random Media 13, R1 (2003)

    ADS  Google Scholar 

  24. L. Sanchez-Palencia, D. Clément, P. Lugan, P. Bouyer, G.V. Shlyapnikov, A. Aspect, Phys. Rev. Lett. 98, 210401 (2007)

    ADS  Google Scholar 

  25. M. Hilke, H. Eleuch, Ann. Phys. 529, 1600347 (2017)

    Google Scholar 

  26. F.A. de Moura, M.L. Lyra, Phys. Rev. Lett. 81, 3735 (1998)

    ADS  Google Scholar 

  27. F. Izrailev, A. Krokhin, Phys. Rev. Lett. 82, 4062 (1999)

    ADS  Google Scholar 

  28. H. Shima, T. Nomura, T. Nakayama, Phys. Rev. B 70, 075116 (2004)

    ADS  Google Scholar 

  29. F.M. Izrailev, A.A. Krokhin, N. Makarov, Phys. Rep. 512, 125 (2012)

    ADS  MathSciNet  Google Scholar 

  30. H. Eleuch, M. Hilke, New J. Phys. 17, 083061 (2015)

    ADS  Google Scholar 

  31. P. Erdös, R. Herndon, Adv. Phys. 31, 65 (1982)

    ADS  Google Scholar 

  32. J.C. Flores, J. Phys.: Condens. Matter 1, 8471 (1989)

    ADS  Google Scholar 

  33. D. Dunlap, H.L. Wu, P. Phillips, Phys. Rev. Lett. 65, 88 (1990)

    ADS  Google Scholar 

  34. J. Flores, M. Hilke, J. Phys. A: Math. General 26, L1255 (1993)

    ADS  Google Scholar 

  35. A. Sánchez, E. Maciá, F. Domínguez-Adame, Phys. Rev. B 49, 147 (1994)

    ADS  Google Scholar 

  36. M. Hilke, J. Flores, Phys. Rev. B 55, 10625 (1997)

    ADS  Google Scholar 

  37. V. Bellani, E. Diez, R. Hey, L. Toni, L. Tarricone, G. Parravicini, Domínguez-Adame, R. Gómez-Alcalá, Phys. Rev. Lett. 82, 2159 (1999)

    ADS  Google Scholar 

  38. M. Hilke, J. Phys. A: Math. General 27, 4773 (1994)

    ADS  MathSciNet  Google Scholar 

  39. M. Hilke, Phys. Rev. Lett. 91, 226403 (2003)

    ADS  Google Scholar 

  40. L. Tessieri, J. Phys. A: Math. General 35, 9585 (2002)

    ADS  MathSciNet  Google Scholar 

  41. H. Eleuch, Y. Rostovtsev, M. Scully, Europhys. Lett. 89, 50004 (2010)

    ADS  Google Scholar 

  42. H. Eleuch, Y.V. Rostovtsev, J. Mod. Opt. 57, 1877 (2010)

    ADS  Google Scholar 

  43. A. Moroz, Europhys. Lett. 117, 40001 (2017)

    ADS  Google Scholar 

  44. H. Eleuch, Y. Rostovtsev, Europhys. Lett. 117, 40002 (2017)

    ADS  Google Scholar 

  45. H. Eleuch, M. Hilke, Results Phys. 11, 1044 (2018)

    ADS  Google Scholar 

  46. H. Makse, S. Havlin, H.E. Stanley, M. Schwartz, Chaos Solitons Fractals 6, 295 (1995)

    ADS  Google Scholar 

  47. O. Usatenko, S. Melnik, S. Apostolov, N. Makarov, A. Krokhin, Phys. Rev. E 90, 053305 (2014)

    ADS  Google Scholar 

  48. F. Li, H. Zheng, S.Y. Zhu, J. Mod. Opt. 63, 1340 (2016)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hilke.

Additional information

Contribution to the Topical Issue “Recent Advances in the Theory of Disordered Systems”, edited by Ferenc Iglói and Heiko Rieger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eleuch, H., Hilke, M. One dimensional localization for arbitrary disorder correlations. Eur. Phys. J. B 92, 269 (2019). https://doi.org/10.1140/epjb/e2019-100474-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100474-5

Navigation