Skip to main content
Log in

Boltzmann transport theory for metal-insulator transitions

Comparison between two and three dimensions

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Introducing both weak-localization corrections and electron-electron interactions of elastic scattering channels into the framework of Boltzmann transport theory, we construct a Wölfle–Vollhardt self-consistent equation for the diffusion coefficient and investigate metal-insulator transitions at finite temperatures. Here, we focus on two dimensional metal-insulator transitions and compare them with those in three dimensions, considering the diffusion constant as a function of both disorder strength and bath temperature. As a result, we find that renormalization of the diffusion constant in two dimensions strongly depends on the bare value of the dephasing rate, introduced to regularize the IR divergence of the weak-localization kernel in two dimensions while the renormalized diffusion coefficient does not rely on the bare value of the dephasing rate much in three dimensions, free from the IR divergence. This result implies that the role of dephasing in renormalization of the diffusion constant is more complex in two dimensions than that in three dimensions, where higher-order interaction corrections for the dephasing rate should be taken into account in the framework of the Boltzmann transport theory.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.S. Langer, T. Neal, Phys. Rev. Lett. 16, 984 (1966)

    Article  ADS  Google Scholar 

  2. T. Neal, Phys. Rev. 169, 508 (1968)

    Article  ADS  Google Scholar 

  3. L.P. Gor’kov, A.I. Larkin, D.E. Khmel’nitskii, Zh. Eksp. Teor. Fiz. Pis’ma Red. 30, 248 (1979) [JETP Lett. 30, 248 (1979)]

    ADS  Google Scholar 

  4. B.L. Altshuler, D. Khmel’nitzkii, A.I. Larkin, P.A. Lee, Phys. Rev. B 22, 5142 (1980)

    Article  ADS  Google Scholar 

  5. P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)

    Article  ADS  Google Scholar 

  6. B.L. Altshuler, A.G. Aronov, inElectron-Electron Interactions in Disordered Systems, edited by A.L. Efros, M. Pollak (Elsevier, Amsterdam, 1985)

  7. B.L. Altshuller, A.G. Aronov, D.E. Khmelnitsky, Solid State Commun. 39, 619 (1981)

    Article  ADS  Google Scholar 

  8. B.L. Altshuler, A.G. Aronov, D.E. Khmelnitsky, J. Phys. C 15, 7367 (1982)

    Article  ADS  Google Scholar 

  9. D. Basko, I.L. Aleiner, B.L. Altshuler, Ann. Phys. (N.Y.) 321, 1126 (2006)

    Article  ADS  Google Scholar 

  10. I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Phys. Rev. Lett. 95, 206603 (2005)

    Article  ADS  Google Scholar 

  11. R. Nandkishore, D.A. Huse, Annu. Rev. Condens. Matter Phys. 6, 15 (2015)

    Article  ADS  Google Scholar 

  12. E. Altman, R. Vosk, Annu. Rev. Condens. Matter Phys. 6, 383 (2015)

    Article  ADS  Google Scholar 

  13. J.-H. Han, K.-S. Kim, Phys. Rev. B 97, 214206 (2018)

    Article  ADS  Google Scholar 

  14. S. Hershfield, V. Ambegaokar, Phys. Rev. B 34, 2147 (1986)

    Article  ADS  Google Scholar 

  15. G. Zala, B.N. Narozhny, I.L. Aleiner, Phys. Rev. B 64, 214204 (2001)

    Article  ADS  Google Scholar 

  16. D. Vollhardt, P. Wölfle, Phys. Rev. Lett. 45, 842 (1980)

    Article  ADS  Google Scholar 

  17. D. Vollhardt, P. Wölfle, Phys. Rev. Lett. 48, 699 (1982)

    Article  ADS  Google Scholar 

  18. A. Punnoose, A.M. Finkelstein, Science 310, 289 (2005)

    Article  ADS  Google Scholar 

  19. S. Anissimova, S.V. Kravchenko, A. Punnoose, A.M. Finkelstein, T.M. Klapwijk, Nat. Phys. 3, 707 (2007)

    Article  Google Scholar 

  20. I.L. Aleiner, Ya.M. Blanter, Phys. Rev. B 65, 115317 (2002)

    Article  ADS  Google Scholar 

  21. B.N. Narozhny, G. Zala, I.L. Aleiner, Phys. Rev. B 65, 180202(R) (2002)

    Article  ADS  Google Scholar 

  22. Y. Liao, M.S. Foster, Phys. Rev. Lett. 120, 236601 (2018)

    Article  ADS  Google Scholar 

  23. C. Tian, Phys. Rev. B 86, 121304(R) (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Ho Han.

Additional information

Contribution to the Topical issue: “Recent Advances in the Theory of Disordered Systems”, edited by Ferenc Iglói and Heiko Rieger

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, KS., Han, JH. Boltzmann transport theory for metal-insulator transitions. Eur. Phys. J. B 93, 21 (2020). https://doi.org/10.1140/epjb/e2019-100424-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100424-9

Navigation