Skip to main content
Log in

Finite difference time domain simulation of arbitrary shapes quantum dots

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Utilizing the finite difference time domain (FDTD) method, energy eigenvalues of spherical, cylindrical, pyramidal and cone-like quantum dots are calculated. To do this, by the imaginary time transformation, we transform the schrödinger equation into a diffusion equation. Then, the FDTD algorithm is hired to solve this equation. We calculate four lowest energy eigenvalues of these QDs and then compared the simulation results with analytical ones. Our results clearly show that simulation results are in very good agreement with analytical results. Therefore, we can use the FDTD method to find accurate results for the Schrödinger equation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bimberg, M. Grundmann, N.N. Ledentsov,Quantum Dot Heterostructures (Wiley, Chichester, 1999)

  2. P. Harrison,Quantum Wells, Wires and Dots: Theoretical and Computational Physics, 2nd edn. (John Wiley, New York, USA, 2005)

  3. H.-C. Wang, Z. Bao, H.-Y. Tsai, A.-C. Tang, R.-S. Liu, Small 14, 1702433 (2018)

    Google Scholar 

  4. K.G. Dvoyan, E.M. Kazaryan, L.S. Petrosyan, Physica E 28, 333 (2005)

    ADS  Google Scholar 

  5. D.B. Hayrapetyan, E.M. Kazaryan, H.A. Sarkisyan, Opt. Commun. 371, 138 (2016)

    ADS  Google Scholar 

  6. K. Batra, V. Prasad, Eur. Phys. J. B 91, 298 (2018)

    ADS  Google Scholar 

  7. P. Schillak, G. Czajkowski, Eur. Phys. J. B 88, 253 (2015)

    ADS  Google Scholar 

  8. M. Sabaeian, M. Shahzadeh, Physica E 61, 62 (2014)

    ADS  Google Scholar 

  9. M. Shahzadeh, M. Sabaeian, AIP Adv. 4, 067113 (2014)

    ADS  Google Scholar 

  10. M. Sabaeian, M. Shahzadeh, Physica E 68, 215 (2015)

    ADS  Google Scholar 

  11. D. El-Moghraby, R.G. Johnson, P. Harrison, Comput. Phys. Commun. 155, 236 (2003)

    ADS  Google Scholar 

  12. C.L.N. Oliveira, J.A.K. freire, V.N. Freire, G.A. Farias, Appl. Surf. Sci. 237, 266 (2004)

    ADS  Google Scholar 

  13. D. Dorfs, A. Eychsüller, Nano Lett. 1, 663 (2001)

    ADS  Google Scholar 

  14. G. Cantele, D. Ninno, G. Iadonisi, J. Phys.: Condens. Matter 12, 9019 (2000)

    ADS  Google Scholar 

  15. X.F. Liu, Z.J. Luo, X. Zhou, J.M. Wei, Y. Wang, X. Guo, Q.Z. Lang, Z. Ding, Eur. Phys. J. B 92, 138 (2019)

    ADS  Google Scholar 

  16. M.S. Atoyan, E.M. Kazaryan, H.A. Sarkisyan, Physica E 31, 83 (2006)

    ADS  Google Scholar 

  17. D.A. Baghdasaryan, D.B. Hayrapetyan, E.M. Kazaryan, Eur. Phys. J. B 88, 223 (2015)

    ADS  Google Scholar 

  18. L. Lu, W. Xie, Z. Shu, Physica B 406, 3735 (2011)

    ADS  Google Scholar 

  19. G. Rezaei, S. Shojaeian Kish, B. Vaseghi, S.F. Taghizadeh, Physica E 62, 104 (2014)

    ADS  Google Scholar 

  20. M. Kirak, Y. Altinok, S. Yilmaz, J. Lumin. 136, 415 (2013)

    Google Scholar 

  21. M. Şahin, J. Appl. Phys. 106, 063710 (2009)

    ADS  Google Scholar 

  22. H.R. Esmaeili, B. Vaseghi, G. Rezaei, Eur. Phys. J. B 91, 284 (2018)

    ADS  Google Scholar 

  23. X.-Z. Yuan, K.-D. Zhu, Physica E 25, 93 (2004)

    ADS  Google Scholar 

  24. A. John Peter, Phys. Lett. A 355, 59 (2006)

    ADS  Google Scholar 

  25. C.Y. Hsieh, D.S. Chuu, J. Phys.: Condens. Matter 12, 8641 (2000)

    ADS  Google Scholar 

  26. S. Aktas, F.K. Boz, Physica E 40, 753 (2008)

    ADS  Google Scholar 

  27. F.K. Boz, S. Aktas, A. Bilekkaya, S.E. Okan, Appl. Surf. Sci. 255, 6561 (2009)

    ADS  Google Scholar 

  28. S. Akgül, M. Şahin, K. Köksal, J. Lumin. 132, 1705 (2012)

    Google Scholar 

  29. G. Rezaei, M.R.K. Vahdani, B. Vaseghi, Curr. Appl. Phys. 11, 176 (2011)

    ADS  Google Scholar 

  30. E.C. Niculescu, C. Stana, G. Tiriba, C. Truşcǎ, Eur. Phys. J. B 90, 100 (2017)

    ADS  Google Scholar 

  31. S. Ebrahim Pourmand, G. Rezaei, B. Vaseghi, Eur. Phys. J. B 92, 96 (2019)

    ADS  Google Scholar 

  32. A.R. Jafari, Y. Naimi, J. Comput. Electron. 12, 36 (2013)

    Google Scholar 

  33. D. Bejan, Eur. Phys. J. B 90, 54 (2017)

    ADS  Google Scholar 

  34. H. Taş, M. Şahin, J. Appl. Phys. 111, 083702 (2012)

    ADS  Google Scholar 

  35. M.J. Karimi, G. Rezaei, M. Nazari, J. Lumin. 145, 55 (2014)

    Google Scholar 

  36. G. Rezaei, B. Vaseghi, J. Ebrahimi, Superlattices Microstruct. 49, 591 (2011)

    ADS  Google Scholar 

  37. H. Sari, F. Ungan, S. Sakiroglu, U. Yesilgul, I. Sökmen, Laser Phys. 29, 056001 (2019)

    ADS  Google Scholar 

  38. A. Anitha, M. Arulmozhi, Pramana J. Phys. 90, 57 (2018)

    ADS  Google Scholar 

  39. Z. Avazzadeh, H. Bahramiyan, R. Khordad, S.A. Mohammadi, Eur. Phys. J. Plus 131, 121 (2016)

    Google Scholar 

  40. R. Khordad, H. Bahramiyan, Eur. Phys. J. Appl. Phys. 67, 20402 (2014)

    ADS  Google Scholar 

  41. V. Lozovski, V. Piatnytsia, J. Comput. Theor. Nanosci. 8, 1 (2011)

    Google Scholar 

  42. J. Shen, W.E.I. Sha, Z. Huanga, M. Chen, X. Wu, Comput. Phys. Commun. 184, 480 (2013)

    ADS  MathSciNet  Google Scholar 

  43. D.M. Sullivan, D.S. Citrin, J. Appl. Phys. 97, 104305 (2005)

    ADS  Google Scholar 

  44. D.M. Sullivan, J. Appl. Phys. 98, 084311 (2005)

    ADS  Google Scholar 

  45. A.K. Roy, A.J. Thakkar, B.M. Deb, J. Phys. A: Math. Gen. 38, 2189 (2005)

    ADS  Google Scholar 

  46. I.W. Sudiarta, D.J.W. Geldart, J. Phys. A: Math. Gen. 40, 1885 (2007)

    ADS  Google Scholar 

  47. M. Strickland, D. Yager-Elorriaga, J. Comput. Phys. 229, 6015 (2010)

    ADS  MathSciNet  Google Scholar 

  48. I.W. Sudiarta, D.J.W. Geldart, Phys. Lett. A 372, 3145 (2008)

    ADS  Google Scholar 

  49. I.W. Sudiarta, L.M. Angraini, AIP Conf. Proc. 2023, 020199 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghasem Rezaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parto, E., Rezaei, G., Eslami, A.M. et al. Finite difference time domain simulation of arbitrary shapes quantum dots. Eur. Phys. J. B 92, 246 (2019). https://doi.org/10.1140/epjb/e2019-100410-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100410-9

Keywords

Navigation