Skip to main content
Log in

Radiative and non-radiative exciton recombination rate constants in ZnSe clusters

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Understanding the origin of photoluminescence intermittency and its correlation with microstructure is crucial for the design and preparation of quantum dots (QDs) with high fluorescence quantum yield. ZnSe clusters provide a typical model for studying the effect of their size, geometrical and electronic structures on their radiative and non-radiative process of II-VI QDs. The rate constants of radiative and non-radiative processes, kr and knr, of the (ZnSe)n clusters were computed by using first-principles calculations, Einstein spontaneous radiation theory and Fermi’s golden rule. The kr and knr variations with cluster size were analyzed in term of a number of quantities. Emission energy and reorganization energy were identified to play dominant roles in the determination of kr and knr for the studied clusters. Furthermore, a correlation between these two quantities and the geometric rigidity of the ZnSe clusters was revealed. The clusters with greater geometric rigidity tend to possess larger emission energy, and smaller reorganization energy. While radiative and non-radiative electron–hole recombination rates of the ZnSe clusters vary in a complicated way because of their diverse structures and prominent quantum size effect, our study highlights the correlation between recombination rate and cluster structure, which would be helpful for the design of QD materials with high fluorescence quantum yields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.I. Klimov , A.A. Mikhailovsky , M.G. Bawendi , Science 290 , 314 (2000)

    ADS  Google Scholar 

  2. C. Dang , J. Lee , C. Breen , J.S. Steckel , S. Coe-Sullivan , A. Nurmikko , Nat. Nanotechnol. 7 , 1 (2012)

    Google Scholar 

  3. Y.S. Park , W.K. Bae , T. Baker , J. Lim , V.I. Klimov , Nano Lett. 15 , 7319 (2015)

    ADS  Google Scholar 

  4. A.G. Pattantyus-Abraham , I.J. Kramer , A.R. Barkhouse , X. Wang , G. Konstantatos , R. Debnath , L. Levina , I. Raabe , M.K. Nazeeruddin , M. Gratzel , E.H. Sargent , ACS Nano 4 , 3374 (2010)

    Google Scholar 

  5. E.H. Sargent , Nat. Photonics 6 , 133 (2012)

    ADS  Google Scholar 

  6. R. Gill , M. Zayats , I. Willner , Angew. Chem. Int. Ed 47 , 7602 (2008)

    Google Scholar 

  7. I.L. Medintz , H. Mattoussi , Phys. Chem. Chem. Phys. 11 , 17 (2009)

    Google Scholar 

  8. M. Bruchez , M. Moronne , P. Gin , S. Weiss , A.P. Alivisatos , Science 281 , 2013 (1998)

    ADS  Google Scholar 

  9. W.C. Chan , S. Nie , Science 281 , 2016 (1998)

    ADS  Google Scholar 

  10. X. Michalet , F.F. Pinaud , L.A. Bentolila , J.M. Tsay , S. Doose , J.J. Li , G. Sundaresan , A.M. Wu , S.S. Gambhir , S. Weiss , Science 307 , 538 (2005)

    ADS  Google Scholar 

  11. M. Nirmal , B.O. Dabbousi , M.G. Bawendi , J.J. Macklin , J.K. Trautman , T.D. Harris , L.E. Brus , Nature 383 , 802 (1996)

    ADS  Google Scholar 

  12. A.L. Efros , D.J. Nesbitt , Nat. Nanotechnol. 11 , 661 (2016)

    ADS  Google Scholar 

  13. A.L. Efros , M. Rosen , Phys. Rev. Lett. 78 , 1110 (1997)

    ADS  Google Scholar 

  14. P.A. Frantsuzov , S. Volkan-Kacso , B. Janko , Phys. Rev. Lett. 103 , 207402 (2009)

    ADS  Google Scholar 

  15. C. Galland , Y. Ghosh , A. Steinbruck , M. Sykora , J.A. Hollingsworth , V.I. Klimov , H. Htoon , Nature 479 , 203 (2011)

    ADS  Google Scholar 

  16. G. Yuan , D.E. Gomez , N. Kirkwood , K. Boldt , P. Mulvaney , ACS Nano 12 , 3397 (2018)

    Google Scholar 

  17. A. Zhang , C. Dong , H. Liu , J. Ren , J. Phys. Chem. C 117 , 24592 (2013)

    Google Scholar 

  18. C. Dong , H. Liu , A. Zhang , J. Ren , Chem. Eur. J. 20 , 1940 (2014)

    Google Scholar 

  19. B. Mahler , P. Spinicelli , S. Buil , X. Quelin , J.P. Hermier , B. Dubertret , Nat. Mater. 7 , 659 (2008)

    ADS  Google Scholar 

  20. X. Peng , M.C. Schlamp , A.V. Kadavanich , A.P. Alivisatos , J. Am. Chem. Soc. 119 , 7019 (1997)

    Google Scholar 

  21. J.J. Li , Y.A. Wang , W. Guo , J.C. Keay , T.D. Mishima , M.B. Johnson , X. Peng , J. Am. Chem. Soc. 125 , 12567 (2003)

    Google Scholar 

  22. Y.S. Park , W.K. Bae , J.M. Pietryga , V.I. Klimov , ACS Nano 8 , 7288 (2014)

    Google Scholar 

  23. Y.S. Park , W.K. Bae , L.A. Padilha , J.M. Pietryga , V.I. Klimov , Nano Lett. 14 , 396 (2014)

    ADS  Google Scholar 

  24. G.E. Cragg , A.L. Efros , Nano Lett. 10 , 313 (2010)

    ADS  Google Scholar 

  25. X. Wang , X. Ren , K. Kahen , M.A. Hahn , M. Rajeswaran , S. Maccagnano-Zacher , J. Silcox , G.E. Cragg , A.L. Efros , T.D. Krauss , Nature 459 , 686 (2009)

    ADS  Google Scholar 

  26. W.K. Bae , L.A. Padilha , Y.S. Park , H. McDaniel , I. Robel , J.M. Pietryga , V.I. Klimov , ACS Nano 7 , 3411 (2013)

    Google Scholar 

  27. S. Kaniyankandy , S. Rawalekar , H.N. Ghosh , J. Mater. Chem. C 1 , 2755 (2013)

    Google Scholar 

  28. O. Voznyy , E.H. Sargent , Phys. Rev. Lett. 112 , 157401 (2014)

    ADS  Google Scholar 

  29. Y. Shu , B.S. Fales , W.T. Peng , B.G. Levine , J. Phys. Chem. Lett. 8 , 4091 (2017)

    Google Scholar 

  30. B. Goswami , S. Pal , P. Sarkar , G. Seifert , M. Springborg , Phys. Rev. B 73 , 205312 (2006)

    ADS  Google Scholar 

  31. B. Goswami , S. Pal , P. Sarkar , Phys. Rev. B 76 , 045323 (2007)

    ADS  Google Scholar 

  32. J.M. Matxain , J.M. Mercero , J.E. Fowler , J.M. Ugalde , Phys. Rev. A 64 , 053201 (2001)

    ADS  Google Scholar 

  33. P. Deglmann , R. Ahlrichs , K. Tsereteli , J. Chem. Phys. 116 , 1585 (2002)

    ADS  Google Scholar 

  34. S.P. Nanavati , V. Sundararajan , S. Mahamuni , V. Kumar , S.V. Ghaisas , Phys. Rev. B 80 , 245417 (2009)

    ADS  Google Scholar 

  35. M.A. Zwijnenburg , Nanoscale 3 , 3780 (2011)

    ADS  Google Scholar 

  36. M.A. Zwijnenburg , Phys. Chem. Chem. Phys. 15 , 11119 (2013)

    Google Scholar 

  37. A. Burnin , E. Sanville , J.J. BelBruno , J. Phys. Chem. A 109 , 5026 (2005)

    Google Scholar 

  38. Y. Zhao , D.G. Truhlar , J. Chem. Phys. 125 , 194101 (2006)

    ADS  Google Scholar 

  39. J.M. Azpiroz , J.M. Ugalde , I. Infante , J. Chem. Theory Comput. 10 , 76 (2014)

    Google Scholar 

  40. P.J. Hay , W.R. Wadt , J. Chem. Phys. 82 , 270 (1985)

    ADS  Google Scholar 

  41. P.J. Hay , W.R. Wadt , J. Chem. Phys. 82 , 299 (1985)

    ADS  Google Scholar 

  42. D.L. Isac , A. Airinei , D. Maftei , I. Humelnicu , F. Mocci , A. Laaksonen , M. Pinteala , J. Phys. Chem. A 123 , 5525 (2019)

    Google Scholar 

  43. T. Yanai , D.P. Tew , N.C. Handy , Chem. Phys. Lett. 393 , 51 (2004)

    ADS  Google Scholar 

  44. E.K.U. Gross , W. Kohn , Adv. Quantum Chem 21 , 255 (1990)

    ADS  Google Scholar 

  45. M. Kasha , Discuss. Faraday Soc. 9 , 14 (1950)

    Google Scholar 

  46. E. Cancés , B. Mennucci , J. Tomasi , J. Chem. Phys. 107 , 3032 (1997)

    ADS  Google Scholar 

  47. M.J. Frisch , G.W. Trucks , H.B. Schlegel , G.E. Scuseria , M.A. Robb , J.R. Cheeseman , G. Scalmani , V. Barone , G.A. Petersson , H. Nakatsuji , X. Li , M. Caricato , A.V. Marenich , J. Bloino , B.G. Janesko , R. Gomperts , B. Mennucci , H.P. Hratchian , J.V. Ortiz , A.F. Izmaylov , J.L. Sonnenberg , D. Williams-Young , F. Ding , F. Lipparini , F. Egidi , J. Goings , B. Peng , A. Petrone , T. Henderson , D. Ranasinghe , V.G. Zakrzewski , J. Gao , N. Rega , G. Zheng , W. Liang , M. Hada , M. Ehara , K. Toyota , R. Fukuda , J. Hasegawa , M. Ishida , T. Nakajima , Y. Honda , O. Kitao , H. Nakai , T. Vreven , K. Throssell , J.A. Montgomery, Jr. , J.E. Peralta , F. Ogliaro , M.J. Bearpark , J.J. Heyd , E.N. Brothers , K.N. Kudin , V.N. Staroverov , T.A. Keith , R. Kobayashi , J. Normand , K. Raghavachari , A.P. Rendell , J.C. Burant , S.S. Iyengar , J. Tomasi , M. Cossi , J.M. Millam , M. Klene , C. Adamo , R. Cammi , J.W. Ochterski , R.L. Martin , K. Morokuma , O. Farkas , J.B. Foresman , D.J. Fox , Gaussian 16, Revision C. (Gaussian Inc. Wallingford CT, 2016)

  48. J.R. Kuklinski , S. Mukamel , Chem. Phys. Lett 189 , 119 (1992)

    ADS  Google Scholar 

  49. N.K. Swenson , M.A. Ratner , E.A. Weiss , J. Phys. Chem. C 120 , 6859 (2016)

    Google Scholar 

  50. K. Zhang , L. Cai , J. Fan , Y. Zhang , L. Lin , C.-K. Wang , Spectrochim. Acta Part A 209 , 248 (2019)

    ADS  Google Scholar 

  51. Z. Zhu , Y. Zhao , W. Liang , J. Comput. Chem. 40 , 997 (2019)

    Google Scholar 

  52. S. Feng , K. Wen , Y. Si , X. Guo , J. Zhang , J. Comput. Chem. 39 , 2601 (2018)

    Google Scholar 

  53. Q. Zhu , X. Guo , J. Zhang , J. Comput. Chem. 40 , 1578 (2019)

    Google Scholar 

  54. J. Zheng , Y.K. Kang , M.J. Therien , D.N. Beratan , J. Am. Chem. Soc. 127 , 11303 (2005)

    Google Scholar 

  55. W. Zhang , W. Zhu , W. Liang , Y. Zhao , S.F. Nelsen , J. Phys. Chem. B 112 , 11079 (2008)

    Google Scholar 

  56. Y. Gao , S. Zhang , Y. Pan , L. Yao , H. Liu , Y. Guo , Q. Gu , B. Yang , Y. Ma , Phys. Chem. Chem. Phys. 18 , 24176 (2016)

    Google Scholar 

  57. S. Biswas , A. Pramanik , S. Pal , P. Sarkar , J. Phys. Chem. C 121 , 2574 (2017)

    Google Scholar 

  58. T. Lu , F. Chen , J. Comput. Chem. 33 , 580 (2012)

    Google Scholar 

  59. S. Grimme , J. Antony , S. Ehrlich , H. Krieg , J. Chem. Phys. 132 , 154104 (2010)

    ADS  Google Scholar 

  60. Z.R. Grabowski , K. Rotkiewicz , W. Rettig , Chem. Rev. 103 , 3899 (2003)

    Google Scholar 

  61. F.L. Hirshfeld , Theoret. Claim. Acta 44 , 129 (1977)

    Google Scholar 

  62. Y. Wang , P. Bao , J. Wang , R. Jia , F.Q. Bai , H.X. Zhang , Inorg. Chem. 57 , 6561 (2018)

    Google Scholar 

  63. Y. Chen , A. Ren , Z. Yang , T. He , X. Ding , H. Zhang , L. Zou , Phys. Chem. Chem. Phys. 20 , 9419 (2018)

    Google Scholar 

  64. G. Overney , W. Zhong , D. Tomanek , Z. Phys. D 27 , 93 (1993)

    ADS  Google Scholar 

  65. J.H. Jia , Q.M. Wang , J. Am. Chem. Soc. 131 , 16634 (2009)

    Google Scholar 

  66. K. Pyo , V.D. Thanthirige , K. Kwak , P. Pandurangan , G. Ramakrishna , D. Lee , J. Am. Chem. Soc. 137 , 8244 (2015)

    Google Scholar 

  67. Z. Gan , Y. Lin , L. Luo , G. Han , W. Liu , Z. Liu , C. Yao , L. Weng , L. Liao , J. Chen , X. Liu , Y. Luo , C. Wang , S. Wei , Z. Wu , Angew. Chem. Int. Ed 55 , 11567 (2016)

    Google Scholar 

  68. M. Bixon , J. Jortner , J. Cortes , H. Heitele , M.E. Michel-Beyerle , J. Phys. Chem. 98 , 7289 (1994)

    Google Scholar 

  69. J.S. Wilson , N. Chawdhury , M.R.A. Al-Mandhary , M. Younus , M.S. Khan , P.R. Raithby , A. Köhler , R.H. Friend , J. Am. Chem. Soc. 123 , 9412 (2001)

    Google Scholar 

  70. R. Englman , J. Jortner , Mol. Phys. 18 , 145 (1970)

    ADS  Google Scholar 

  71. S.D. Dimitrov , B.C. Schroeder , C.B. Nielsen , H. Bronstein , Z. Fei , I. McCulloch , M. Heeney , J.R. Durrant , Polymers 8 , 1 (2016)

    Google Scholar 

  72. K. Kwak , V.D. Thanthirige , K. Pyo , D. Lee , G. Ramakrishna , J. Phys. Chem. Lett. 8 , 4898 (2017)

    Google Scholar 

  73. C. Javaux , B. Mahler , B. Dubertret , A. Shabaev , A.V. Rodina , A.L. Efros , D.R. Yakovlev , F. Liu , M. Bayer , G. Camps , L. Biadala , S. Buil , X. Quelin , J.P. Hermier , Nat. Nanotechnol. 8 , 206 (2013)

    ADS  Google Scholar 

  74. L.A. Lane , A.M. Smith , T. Lian , S. Nie , J. Phys. Chem. B 118 , 14140 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingli Yang.

Additional information

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjb/e2019-100406-y.

Electronic supplementary material

Supplementary file supplied by authors.

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, N., Yu, S., Xie, Y. et al. Radiative and non-radiative exciton recombination rate constants in ZnSe clusters . Eur. Phys. J. B 92, 280 (2019). https://doi.org/10.1140/epjb/e2019-100406-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100406-y

Keywords

Navigation