Skip to main content
Log in

Fluctuation relations for flow-driven trapped colloids and implications for related polymeric systems

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

This paper is a theoretical study of the stochastic thermodynamics of a single, optically trapped particle that is initially in equilibrium at temperature T and is then subjected to a steady 2D extensional flow. Specifically, it is an attempt to show how fluctuation theorems arise in systems governed by thermal noise and the opposing effects of harmonic confinement and hydrodynamic driving. Among the paper’s findings are the following: (i) that at long times, following the imposition of the flow, the system settles into an equilibrium stationary state that obeys detailed balance and that is characterized by an effective Boltzmann potential, such that the free energy change ΔF between the initial and final states is determined by the ratio of the corresponding partition functions, (ii) that the work done in the process w and the accompanying change in total entropy of system and surroundings, ΔStot, both satisfy fluctuation theorems, the first the Jarzynski equality ⟨ew/kBT⟩ = e−ΔF/kBT, and the second the integral fluctuation theorem, ⟨e−ΔStot/kB⟩ = 1, and (iii) that under a frame-invariant version of thermodynamics used to describe flow-driven particle motion, the work done W satisfies the Bochkov-Kuzovlev relation, ⟨eW/kBT⟩ = 1, while the associated total entropy change continues to satisfy the integral fluctuation theorem. These results have an immediate bearing on prior results from this lab on the dynamics of flow-driven polymers; in particular, they highlight the need to revise a number of our earlier conclusions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.N. Bochkov, Yu.E. Kuzovlev, Sov. Phys. JETP 45, 125 (1977)

    ADS  Google Scholar 

  2. C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)

    Article  ADS  Google Scholar 

  3. E.M. Sevick, R. Prabhakar, S.R. Williams, D.J. Searles, Annu. Rev. Phys. Chem. 59, 603 (2008)

    Article  ADS  Google Scholar 

  4. F. Ritort, Adv. Chem. Phys. 137, 31 (2008)

    Google Scholar 

  5. C. Jarzynski, Eur. Phys. J. B 64, 331 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Ciliberto, S. Joubaud, J. Stat. Mech. 2010, P12003 (2010)

    Article  Google Scholar 

  7. C. Jarzynski, Annu. Rev. Condens. Matter Phys. 2, 329 (2011)

    Article  ADS  Google Scholar 

  8. U. Seifert, Rep. Prog. Phys. 75, 126001 (2012)

    Article  ADS  Google Scholar 

  9. R. Spinney, I. Ford, inNonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond, edited by R. Klages, W. Just, C. Jarzynski (Wiley-VCH Verlag & Co., Weinheim, 2013), pp. 3–56

  10. S. Lahiri, A.M. Jayannavar, Resonance 23, 573 (2018)

    Article  Google Scholar 

  11. I. Prigogine,Introduction to Thermodynamics of Irreversible Processes, 3rd edn. (Interscience, New York, 1967)

  12. Y. Oono, M. Paniconi, Prog. Theor. Phys. Suppl. 130, 29 (1998)

    Article  ADS  Google Scholar 

  13. L.E. Reichl,A Modern Course in Statistical Physics (Wiley-VCH Verlag & Co., Weinheim, 2016)

  14. O. Mazonka, C. Jarzynski, https://arXiv:cond-mat/9912121v1

  15. A. Imparato, L. Peliti, G. Pesce, G. Rusciano, A. Sasso, Phys. Rev. E 76, 050101 (2007)

    Article  ADS  Google Scholar 

  16. A. Engel, Phys. Rev. E 80, 021120 (2009)

    Article  ADS  Google Scholar 

  17. F. Latinwo, C.M. Schroeder, Macromolecules 46, 8345 (2013)

    Article  ADS  Google Scholar 

  18. F. Latinwo, C.M. Schroeder, Soft Matter 10, 2178 (2014)

    Article  ADS  Google Scholar 

  19. C.M. Schroeder, J. Rheol. 62, 371 (2018)

    Article  ADS  Google Scholar 

  20. F. Latinwo, K.-W. Hsiao, C.M. Schroeder, J. Chem. Phys. 141, 174903 (2014)

    Article  ADS  Google Scholar 

  21. A. Ghosal, B.J. Cherayil, J. Chem. Phys. 144, 214902 (2016)

    Article  ADS  Google Scholar 

  22. A. Ghosal, B.J. Cherayil, J. Chem. Phys. 145, 204901 (2016)

    Article  ADS  Google Scholar 

  23. A. Ghosal, B.J. Cherayil, J. Chem. Phys. 147, 064905 (2017)

    Article  ADS  Google Scholar 

  24. A. Ghosal, B.J. Cherayil, J. Chem. Phys. 148, 094903 (2018)

    Article  ADS  Google Scholar 

  25. G.G. Fuller, L.G. Leal, J. Non-Newtonian Fluid Mech. 8, 271 (1981)

    Article  Google Scholar 

  26. P.N. Dunlap, L.G. Leal, J. Non-Newtonian Fluid Mech. 23, 5 (1987)

    Article  Google Scholar 

  27. T. Tomé, Braz. J. Phys. 36, 1285 (2006)

    Article  ADS  Google Scholar 

  28. A. Pagare, B.J. Cherayil, preprint

  29. T. Hatano, S. Sasa, Phys. Rev. Lett. 86, 3463 (2001)

    Article  ADS  Google Scholar 

  30. E.H. Trepagnier, C. Jarzynski, F. Ritort, G.E. Crooks, C.J. Bustamante, J. Liphardt, Proc. Natl. Acad. Sci. USA 101, 15038 (2004)

    Article  ADS  Google Scholar 

  31. A. Berut, A. Imparato, A. Petrosyan, S. Ciliberto, Phys. Rev. Lett. 116, 068301 (2016)

    Article  ADS  Google Scholar 

  32. J.R. Gomez-Solano, A. Petrosyan, S. Ciliberto, R. Chetrite, K. Gawedzki, Phys. Rev. Lett. 103, 040601 (2009)

    Article  ADS  Google Scholar 

  33. K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998)

    Article  ADS  Google Scholar 

  34. V. Blickle, T. Speck, L. Helden, U. Seifert, C. Bechinger, Phys. Rev. Lett. 96, 070603 (2006)

    Article  ADS  Google Scholar 

  35. U. Seifert, Phys. Rev. Lett. 95, 040602 (2005)

    Article  ADS  Google Scholar 

  36. T. Speck, J. Mehl, U. Seifert, Phys. Rev. Lett. 100, 178302 (2008)

    Article  ADS  Google Scholar 

  37. D. Chatterjee, B.J. Cherayil, Phys. Rev. E 82, 051104 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  38. R. Sharma, B.J. Cherayil, Phys. Rev. E 83, 041805 (2011)

    Article  ADS  Google Scholar 

  39. A. Ghosal, B.J. Cherayil, J. Stat. Mech. 2016, 043201 (2016)

    Article  Google Scholar 

  40. M. Chaichian, A. Demichev,Stochastic Processes and Quantum Mechanics (Institute of Physics Publishing, Bristol, 2001), Vol. I

  41. R.P. Feynman, A.R. Hibbs, D.F. Styer,Quantum Mechanics and Path Integrals (Dover Publications, New York, 2010)

  42. J. Horowitz, C. Jarzynski, Phys. Rev. E 79, 021106 (2009)

    Article  ADS  Google Scholar 

  43. A. Dua, B.J. Cherayil, J. Chem. Phys. 112, 8707 (2000)

    Article  ADS  Google Scholar 

  44. K.F. Freed, Adv. Chem. Phys. 22, 1 (1972)

    Google Scholar 

  45. Y. Oono, Adv. Chem. Phys. 61, 301 (1985)

    Google Scholar 

  46. M. Doi, S.F. Edwards,The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986)

  47. K.F. Freed,Renormalization group Theory of Macromoleules (Wiley-Interscience, 1987)

  48. Wolfram Research Inc. 2015 Mathematica, Version 10.0, Champaign, IL.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binny J. Cherayil.

Additional information

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjb/e2019-100376-0

Electronic supplementary material

Supplementary data

PDF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosal, A., Cherayil, B.J. Fluctuation relations for flow-driven trapped colloids and implications for related polymeric systems. Eur. Phys. J. B 92, 243 (2019). https://doi.org/10.1140/epjb/e2019-100376-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100376-0

Keywords

Navigation