Skip to main content
Log in

Symmetry considerations on band filling and first optical transition in NiO

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Recent theoretical works on NiO have not agreed upon the nature of the first optical transition. By altering band filling – with highly concentrated O vacancies and Fe impurities – here, the orbital density of states is changed near the Fermi energy. The variation in optical properties, relative to the changes in orbital character, along with group theory analysis of hybridized orbitals, provides new insight when evaluating the first optical transition of NiO. Here, based on density functional theory, the first optical transition is found to have two possibilities – either superexchange site-hopping or a transition from the hybridized eg state to the hybridized a1u state, rather than the intra-atomic transitions which are causing disagreement in the recent literature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.-W. Nam, K.-B. Kim, J. Electrochem. Soc. 149, A346 (2002)

    Google Scholar 

  2. X. Xia, J. Tu, Y. Mai, R. Chen, X. Wang, C. Gu, X. Zhao, Chem. Eur. J. 17, 10898 (2011)

    Google Scholar 

  3. R. Vardimon, M. Klionsky, O. Tal, Nano Lett. 15, 3894 (2015)

    ADS  Google Scholar 

  4. R.C. Korošec, P. Bukovec, Acta Chim. Slov. 53, 136 (2006)

    Google Scholar 

  5. I. Hotovy, J. Huran, P. Siciliano, S. Capone, L. Spiess, V. Rehacek, Sens. Actuators B 78, 126 (2001)

    Google Scholar 

  6. J.Y. Son, Y.H. Shin, Appl. Phys. Lett. 92, 1 (2008)

    Google Scholar 

  7. T.G. Seong, M.R. Joung, J.W. Sun, M.K. Yang, J.K. Lee, J.W. Moon, J. Roh, S. Nahm, Jpn. J. Appl. Phys. 51, 041102 (2012)

    ADS  Google Scholar 

  8. G. Ma, X. Tang, H. Zhang, Z. Zhong, J. Li, H. Su, Microelectr. Eng. 139, 43 (2015)

    Google Scholar 

  9. C. Cagli, F. Nardi, D. Ielmini, IEEE Trans. Electron Devices 56, 1712 (2009)

    ADS  Google Scholar 

  10. J.A. Dawson, Y. Guo, J. Robertson, Appl. Phys. Lett. 107, 2 (2015)

    Google Scholar 

  11. G.S. Park, X.S. Li, D.C. Kim, R.J. Jung, M.J. Lee, S. Seo, Appl. Phys. Lett. 91, 9 (2007)

    Google Scholar 

  12. H.Y. Peng, Y.F. Li, W.N. Lin, Y.Z. Wang, X.Y. Gao, T. Wu, Sci. Rep. 2, 442 (2012)

    ADS  Google Scholar 

  13. S. Park, H.S. Ahn, C.K. Lee, H. Kim, H. Jin, H.S. Lee, S. Seo, J. Yu, S. Han, Phys. Rev. B 77, 1 (2008)

    Google Scholar 

  14. B. Magyari-Köpe, S.G. Park, H.D. Lee, Y. Nishi, J. Mater. Sci. 47, 7498 (2012)

    ADS  Google Scholar 

  15. S. Lany, J. Osorio-Guillén, A. Zunger, Phys. Rev. B 75, 1 (2007)

    Google Scholar 

  16. J. Yu, K.M. Rosso, S.M. Bruemmer, J. Phys. Chem. C 116, 1948 (2012)

    Google Scholar 

  17. H.D. Lee, B. Magyari-Köpe, Y. Nishi, Phys. Rev. B 81, 1 (2010)

    Google Scholar 

  18. C. Rödl, F. Fuchs, J. Furthmüller, F. Bechstedt, Phys. Rev. B 79, 1 (2009)

    Google Scholar 

  19. J. Zaanen, G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 55, 418 (1985)

    ADS  Google Scholar 

  20. D. Adler, J. Feinleib, Phys. Rev. B 2, 3112 (1970)

    ADS  Google Scholar 

  21. A. Fujimori, F. Minami, S. Sugano, Phys. Rev. B 29, 5225 (1984)

    ADS  Google Scholar 

  22. A. Fujimori, F. Minami, Phys. Rev. B 30, 957 (1984)

    ADS  Google Scholar 

  23. G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 53, 2339 (1984)

    ADS  Google Scholar 

  24. J. Zaanen, G.A. Sawatzky, J. Solid State Chem. 88, 8 (1990)

    ADS  Google Scholar 

  25. J. Petersen, F. Twagirayezu, P.D. Borges, L. Scolfaro, W. Geerts, MRS Adv. 1, 2617 (2016)

    Google Scholar 

  26. A. Ghosh, C.M. Nelson, L.S. Abdallah, S. Zollner, J. Vac. Sci. Technol. A 33, 061203 (2015)

    Google Scholar 

  27. R. Gillen, J. Robertson, J. Phys.: Condens. Matter 25, 165502 (2013)

    ADS  Google Scholar 

  28. C. Rödl, F. Bechstedt, Phys. Rev. B 86, 1 (2012)

    Google Scholar 

  29. V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44, 943 (1991)

    ADS  Google Scholar 

  30. S.L. Dudarev, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998)

    ADS  Google Scholar 

  31. H. Shin, Y. Luo, P. Ganesh, J. Balachandran, J.T. Krogel, P.R.C. Kent, A. Benali, O. Heinonen, Phys. Rev. Mater. 1, 73603 (2017)

    Google Scholar 

  32. A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, G.E. Scuseria, J. Chem. Phys. 125, 224106 (2006)

    ADS  Google Scholar 

  33. V. Raghavan, J. Phase Equilib. Diffus. 31, 369 (2010)

    Google Scholar 

  34. M.S. Compton, N.A. Simpson, E.G. LeBlanc, M.A. Robinson, W.J. Geerts, MRS Proc. 1708, mrss14 (2014)

    Google Scholar 

  35. M.A.A. Talukder, Y. Cui, M. Compton, W. Geerts, L. Scolfaro, S. Zollner, MRS Adv. 1, 3361 (2016)

    Google Scholar 

  36. A.K. Bandyopadhyay, S.E. Rios, A. Tijerina, C.J. Gutierrez, J. Alloys Compd. 369, 217 (2004)

    Google Scholar 

  37. Y. Wensheng, W. Weng, G. Zhang, Z. Sun, Q. Liu, Z. Pan, Y. Guo, P. Xu, S. Wei, Y. Zhang, S. Yan, Appl. Phys. Lett. 92, 52508 (2008)

    Google Scholar 

  38. M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt, Phys. Rev. B 73, 45112 (2006)

    ADS  Google Scholar 

  39. J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  40. J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)

    ADS  Google Scholar 

  41. A. Rohrbach, J. Hafner, G. Kresse, Phys. Rev. B 69, 75413 (2004)

    ADS  Google Scholar 

  42. S. Baroni, R. Resta, Phys. Rev. B 33, 7017 (1986)

    ADS  Google Scholar 

  43. F. Birch, Phys. Rev. 71, 809 (1947)

    ADS  Google Scholar 

  44. A.K. Cheetham, D.A.O. Hope, Phys. Rev. B 27, 6964 (1983)

    ADS  Google Scholar 

  45. F.A. Cotton,Chemical Applications of Group Theory (John Wiley and Sons Inc., New York, 1990)

  46. J.E. Petersen, F. Twagirayezu, L.M. Scolfaro, P.D. Borges, W.J. Geerts, AIP Adv. 7, (2017)

  47. M.S. Dresselhaus, G. Dresselhaus, A. (Ado) Jorio,Group Theory: Application to the Physics of Condensed Matter (2008)

  48. Y. Tokura, N. Nagaosa, Science 288, 462 (2000)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JEP wrote the bulk of the paper, performed the bulk of the calculations, and made most of the figures. PDB performed the HSE06 calculations at a later date and added the associated text and graph. LMS and WJG were co-PIs of this work. They have helped greatly along the way in terms of scientific advice and direction.

Corresponding author

Correspondence to John E. Petersen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petersen, J.E., Scolfaro, L.M., Borges, P.D. et al. Symmetry considerations on band filling and first optical transition in NiO. Eur. Phys. J. B 92, 232 (2019). https://doi.org/10.1140/epjb/e2019-100363-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100363-5

Keywords

Navigation