Skip to main content
Log in

Policies for allocation of information in task-oriented groups: elitism and egalitarianism outperform welfarism

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Communication or influence networks are probably the most controllable of all factors that are known to impact on the problem-solving capability of task-forces. In the case connections are costly, it is necessary to implement a policy to allocate them to the individuals. Here we use an agent-based model to study how distinct allocation policies affect the performance of a group of agents whose task is to find the global maxima of NK fitness landscapes. Agents cooperate by broadcasting messages informing on their fitness and use this information to imitate the fittest agent in their influence neighborhoods. The larger the influence neighborhood of an agent, the more links, and hence information, the agent receives. We find that the elitist policy in which agents with above-average fitness have their influence neighborhoods amplified, whereas agents with below-average fitness have theirs deflated, is optimal for smooth landscapes, provided the group size is not too small. For rugged landscapes, however, the elitist policy can perform very poorly for certain group sizes. In addition, we find that the egalitarian policy, in which the size of the influence neighborhood is the same for all agents, is optimal for both smooth and rugged landscapes in the case of small groups. The welfarist policy, in which the actions of the elitist policy are reversed, is always suboptimal, i.e., depending on the group size it is outperformed by either the elitist or the egalitarian policies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Reijula, J. Kuorikoski, Modeling epistemic communities, inThe Routledge Handbook of Social Epistemology, edited by M. Fricker, P.J. Graham, D. Henderson, N.J.L.L. Pedersen (Routledge, Abingdon, UK, 2019)

  2. P. Kitcher,The Advancement of Science: Science Without Legend, Objectivity Without Illusions (Oxford University Press, New York, 1993)

  3. H. Bloom,Global Brain: The Evolution of Mass Mind from the Big Bang to the 21st Century (Wiley, New York, 2001)

  4. D. Lazer, A. Friedman, Admin. Sci. Quart. 52, 667 (2007)

    Article  Google Scholar 

  5. R.L. Goldstone, M.E. Roberts, W. Mason, T. Gureckis, Collective search in concrete and abstract spaces, inDecision Modeling and Behavior in Complex and Uncertain Environments, edited by T. Kugler, J.C. Smith, T. Connolly, Y.-J. Son (Springer, New York, 2008), pp. 277–308

  6. J.F. Fontanari, PLoS ONE 9, e110517 (2014)

    Article  ADS  Google Scholar 

  7. J.F. Fontanari, Eur. Phys. J. B 88, 251 (2015)

    Article  ADS  Google Scholar 

  8. S.M. Reia, A.C. Amado, J.F. Fontanari, Phys. Life Rev., https://doi.org/10.1016/j.plrev.2018.10.004 (2019)

  9. E. Gilbert, SIAM J. Appl. Math. 9, 533 (1961)

    Article  Google Scholar 

  10. S.A. Kauffman, S. Levin, J. Theor. Biol. 128, 11 (1987)

    Article  Google Scholar 

  11. R.K. Merton,The Sociology of Science: Theoretical and Empirical Investigations (University of Chicago Press, Chicago, 1973)

  12. M. Strevens, J. Philos. 100, 55 (2003)

    Article  Google Scholar 

  13. M. Perc, J.J. Jordan, D.G. Rand, Z. Wang, S. Boccaletti, S. Attila, Phys. Rep. 687, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. S.A. Kauffman,At Home in the Universe: The Search for Laws of Self-Organization and Complexity (Oxford University Press, New York, 1995)

  15. H. Kaul, S.H. Jacobson, Math. Program. 108, 475 (2006)

    Article  MathSciNet  Google Scholar 

  16. D. Solow, A. Burnetas, M. Tsai, N.S. Greenspan, Complex Syst. 12, 423 (2000)

    Google Scholar 

  17. W. Hordijk, S.A. Kauffman, P.F. Stadler, Theory Biosci., https://doi.org/10.1007/s12064-019-00296-0 (2019)

  18. M. Starnini, A. Baronchelli, R. Pastor-Satorras, Phys. Rev. Lett. 110, 168701 (2013)

    Article  ADS  Google Scholar 

  19. P.F Gomes, S.M. Reia, F.A. Rodrigues, J.F. Fontanari, Phys. Rev. E 99, 032301 (2019)

    Article  ADS  Google Scholar 

  20. J.F. Fontanari, Europhys. Lett. 113, 28009 (2016)

    Article  ADS  Google Scholar 

  21. Y. Shibanai, S. Yasuno, I. Ishiguro, J. Conflict Resolut. 45, 80 (2001)

    Article  Google Scholar 

  22. J.C. González-Avella, M.G. Cosenza, M. Eguíluz, M. San Miguel, New J. Phys. 12, 013010 (2010)

    Article  ADS  Google Scholar 

  23. L.R. Peres, J.F. Fontanari, Europhys. Lett. 96, 38004 (2011)

    Article  ADS  Google Scholar 

  24. R. Axelrod, J. Conflict Resolut. 41, 203 (1997)

    Article  Google Scholar 

  25. R.K. Merton, Science 159, 56 (1968)

    Article  ADS  Google Scholar 

  26. M. Newman,Networks: An Introduction (Oxford University Press, New York, 2010)

  27. D. Stauffer, A. Aharony,Introduction to Percolation Theory (Taylor & Francis, London, 1992)

  28. I.L. Janis,Groupthink: Psychological Studies of Policy Decisions and Fiascoes (Houghton Mifflin, Boston, 1982)

  29. T. Malone, R. Laubacher, C. Dellarocas, MIT Sloan Manag. Rev. 51, 1 (2010)

    Google Scholar 

  30. B.A. Huberman, Physica D 42, 38 (1990)

    Article  ADS  Google Scholar 

  31. A. Bavelas, J. Acoust. Soc. Am. 22, 725 (1950)

    Article  ADS  Google Scholar 

  32. H.J. Leavitt, J. Abnorm. Soc. Psychol. 46, 38 (1951)

    Article  Google Scholar 

  33. S.M. Reia, P.F Gomes, J.F. Fontanari, Eur. Phys. J. B 92, 109 (2019)

    Article  ADS  Google Scholar 

  34. W. Mason, D.J. Watts, Proc. Natl. Acad. Sci. 109, 764 (2012)

    Article  ADS  Google Scholar 

  35. S.M. Reia, S. Herrmann, J.F. Fontanari, Phys. Rev. E 95, 022305 (2017)

    Article  ADS  Google Scholar 

  36. J.S. Waters, J.H. Fewell, PLoS ONE 7, e40337 (2012)

    Article  ADS  Google Scholar 

  37. C. Pasquaretta, M. Levé, N. Claidière, E. van de Waal, A. Whiten, A.J.J. MacIntosh, M. Pelé, M.L. Bergstrom, C. Borgeaud, S.F. Brosnan, M.C. Crofoot, L.M. Fedigan, C. Fichtel, L.M. Hopper, M.C. Mareno, O. Petit, A.V. Schnoell, E.P. di Sorrentino, B. Thierry, B. Tiddi, C. Sueur, Sci. Rep. 4, 7600 (2014)

    Article  Google Scholar 

  38. R.H.J.M. Kurvers, J. Krause, D.P. Croft, A.D.M. Wilson, M. Wolf, Trends Ecol. Evol. 29, 326 (2014)

    Article  Google Scholar 

  39. M.E. Dickison, M. Magnani, L. Rossi,Multilayer Social Networks (Cambridge University Press, Cambridge, 2016)

  40. J.F. Fontanari, F.A. Rodrigues, Theory Biosci. 135, 101 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José F. Fontanari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reia, S.M., Gomes, P.F. & Fontanari, J.F. Policies for allocation of information in task-oriented groups: elitism and egalitarianism outperform welfarism. Eur. Phys. J. B 92, 205 (2019). https://doi.org/10.1140/epjb/e2019-100345-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100345-7

Keywords

Navigation