Skip to main content
Log in

Time evolution of statistical properties of a radiation field described by a density operator that interpolates between pure and mixing states

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this work, we consider a different model of density operator and a heuristic procedure that interpolates a photonic system from pure to mixed states. It is interpreted as if, during the time evolution of the system, the variables of a (hidden) system reservoir being traced. The aim is to study the time evolution of statistical properties while the system loses its initial purity. For this purpose, the system impurity, the evolution of Mandel parameter and entropy were calculated. A comparison between Shannon and von Neumann entropies in the present scenario is done, which could be of interest in quantum information. Another comparison, between the present approach with the traditional treatment concerning decoherence of a system state, was also considered.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Born, P. Jordan, Z. Phys. 34, 858 (1925)

    Article  ADS  Google Scholar 

  2. M. Born, W. Heisenberg, P. Jordan, Z. Phys. 35, 557 (1926)

    Article  ADS  Google Scholar 

  3. C. Gerry, P.L. Knight,Introductory Quantum Optics (Cambridge University Press, New York, 2005)

  4. S.M. Barnett, D.T. Pegg, Phys. Rev. A 60, 4965 (1999)

    Article  ADS  Google Scholar 

  5. L.A. de Souza, B. Baseia, J.M.C. Malbouisson, Phys. Lett. A 309, 5 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  6. K. Husimi, Nippon Sugaku-Buturigakkwai Kizi Dai 3 Ki 22, 264 (1940)

    Google Scholar 

  7. P.S. Hubbard, Rev. Mod. Phys. 33, 249 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  8. K.E. Cahill, R.J. Glauber, Phys. Rev. 177, 1882 (1969)

    Article  ADS  Google Scholar 

  9. M. Hillery, Phys. Lett. A 111, 409 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  10. J. Gea-Banacloche, Phys. Rev. Lett. 65, 3385 (1990)

    Article  ADS  Google Scholar 

  11. D.T. Smithey et al., Phys. Rev. Lett. 70, 1244 (1993)

    Article  ADS  Google Scholar 

  12. L.S. Costanzo, Phys. Rev. Lett. 119, 13601 (2017)

    Article  ADS  Google Scholar 

  13. B. Schumacher, Phys. Rev. A. 51, 2738 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Reboiro, O. Civitarese, D. Tielas, Int. J. Mod. Phys. B 27, 1350117 (2013)

    Article  ADS  Google Scholar 

  15. M. Reboiro, O. Civitarese, D. Tielas, J. Russ. Laser Res. 35, 110 (2014)

    Article  Google Scholar 

  16. C.E. Shannon, Bell Syst. Tech. J. 27, 379 (1948)

    Article  Google Scholar 

  17. F. Sagasta, K.F. Tee, R. Piotrkowski, J. Nondestruct. Eval. 38, 27 (2019)

    Article  Google Scholar 

  18. O.R. de Araujo et al., Mod. Phys. Lett. A 34, 1950017 (2019)

    Article  ADS  Google Scholar 

  19. A.-S.F. Obada et al., Phys. Rev. A 48, 3174 (1993)

    Article  ADS  Google Scholar 

  20. B. Baseia, S.D. Duarte, J.M.C. Malbouisson, J. Opt. B 3, 152 (2001)

    Article  ADS  Google Scholar 

  21. H.M. Nussenzveig, Introduction to Quantum Optics, Documents on Modern Physics: Gordon and Breach (Gordon and Breach Science Publishers, New York, 1973)

  22. B. Baseia, H.M. Nussenzveig, Optica Acta 31, 39 (1984)

    Article  ADS  Google Scholar 

  23. J.C. Penaforte, B. Baseia, Phys. Rev. A 30, 1401 (1984)

    Article  ADS  Google Scholar 

  24. J.C. Penaforte, B. Baseia, Phys. Lett. A 107, 250 (1985)

    Article  ADS  Google Scholar 

  25. I. Guedes, J.C. Penaforte, B. Baseia, Phys. Rev. A 40, 2463 (1989)

    Article  ADS  Google Scholar 

  26. I. Guedes, B. Baseia, Phys. Rev. A 42, 6858 (1990)

    Article  ADS  Google Scholar 

  27. J.P. Paz, W.H. Zurek, Phys. Rev. Lett. 82, 5181 (1999)

    Article  ADS  Google Scholar 

  28. W.H. Zurek, Los Alamos Science 27, 86 (2002)

    Google Scholar 

  29. W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  Google Scholar 

  30. H. Carmichael, An Open Systems Approach to Quantum Optics: Lectures Presented at the Université Libre de Bruxelles, October 28 to November 4, 1991, Lecture Notes in Physics Monographs (Springer, Berlin, 2009)

  31. J. Dalibard, Y. Castin, K. Mølmer, Phys. Rev. Lett. 68, 580 (1992)

    Article  ADS  Google Scholar 

  32. R. Loudon, Optica Acta 30, 7 (1983)

    Article  ADS  Google Scholar 

  33. C.M. Bender, Rep. Prog. Phys. 70, 947 (2007)

    Article  ADS  Google Scholar 

  34. C.M. Bender et al., J. Phys. A 45, 440301 (2012)

    Article  Google Scholar 

  35. M.H.Y. Moussa, S.S. Mizrahi, O.A. Caldeira, Phys. Lett. A 221, 145 (1996)

    Article  ADS  Google Scholar 

  36. A. Fring, M.H.Y. Moussa, Phys. Rev. A 93, 42114 (2016)

    Article  ADS  Google Scholar 

  37. W.H. Louisell, Quantum Statistical Properties of Radiation, Wiley Classics Library (John Wiley & Sons, New York, 1990)

  38. V.V. Dodonov et al., Ann. Phys. 371, 296 (2016)

    Article  ADS  Google Scholar 

  39. M. Brune et al., Phys. Rev. Lett. 77, 4887 (1996)

    Article  ADS  Google Scholar 

  40. V.V. Dodonov, I.A. Malkin, V.I. Man’ko, Physica 72, 597 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  41. A. Peres, Quantum Theory: Concepts and Methods, Fundamental Theories of Physics (Springer, Netherlands, 2006)

  42. J. Von Neumann, Mathematical Foundations of Quantum Mechanics, translated from the German edition by Robert T. Beyere (Princeton University Press, Princeton, 1955)

  43. E. Merzbacher,Quantum Mechanics, 3rd edn. (John Wiley & Sons, New York, 1998)

  44. A.R. Gomes, B. Baseia, G.C. Marques, Mod. Phys. Lett. B 9, 999 (1995)

    Article  ADS  Google Scholar 

  45. L.P.A. Maia, B. Baseia, A.T. Avelar, J.M.C. Malbouisson, J. Opt. B 6, 351 (2004)

    Article  ADS  Google Scholar 

  46. D.M. Meekhof et al., Phys. Rev. Lett. 76, 1796 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. J. S. Ferreira, T. M. Silva or B. Baseia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, C.J.S., Silva, T.M. & Baseia, B. Time evolution of statistical properties of a radiation field described by a density operator that interpolates between pure and mixing states. Eur. Phys. J. B 92, 257 (2019). https://doi.org/10.1140/epjb/e2019-100335-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100335-3

Keywords

Navigation