Skip to main content

Advertisement

Log in

Structural, mechanical, and thermodynamic properties of R-3m ReB4 under high pressure

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The structural, mechanical, and thermodynamic properties of R-3m ReB4 under high pressure were investigated by using the density functional theory in combination with the quasi-harmonic Debye model in this work. The calculated structure parameters and bulk moduli of R-3m ReB4 at zero pressure are in good agreement with previous theoretical data. The calculated single crystal elastic constants and phonon spectra revealed that R-3m ReB4 is mechanically and dynamically stable at least 100 GPa. The pressure dependence of elastic constants and elastic modulus (B, G, and E) have been determined. Based on the obtained elastic modulus, two theoretical models were used to predict the Vickers hardness of R-3m ReB4. Furthermore, through plotting the directional dependent of bulk moduli, Young’s moduli, and shear moduli, the elastic anisotropy has been investigated in detail. Moreover, using the quasi-harmonic Debye model, some basic thermodynamical quantities such as the heat capacity, Grüneisen parameter, and the thermal expansion coefficients of R-3m ReB4 were explored under high temperature and high pressure. The obtained results can provide valuable reference for future synthesis and application R-3m ReB4 material.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.B. Kaner, J.J. Gilman, S.H. Tolbert, Science 308, 1268 (2005)

    Google Scholar 

  2. X. Yang, M. Yao, X. Wu, Phys. Rev. Lett. 118, 245701 (2017)

    ADS  Google Scholar 

  3. D. Wang, R. Shi, L.H. Gan, Chem. Phys. Lett. 669, 80 (2017)

    ADS  Google Scholar 

  4. A.M. Tehrani, J. Brgoch, J. Solid State Chem. 271, 47 (2019)

    ADS  Google Scholar 

  5. A.M. Tehrani, A.O. Oliynyk, M. Parry, Z. Rizvi, S. Couper, F. Lin, L. Miyagi, T.D. Sparks, J. Brgoch, J. Am. Chem. Soc. 140, 9844 (2018)

    Google Scholar 

  6. G. Akopov, M.T. Yeung, C.L. Turner, R. Mohammadi, R.B. Kaner, J. Am. Chem. Soc. 138, 5714 (2016)

    Google Scholar 

  7. G. Akopov, L.E. Pangilinan, R. Mohammadi, R.B. Kaner, APL Mater. 6, 070901 (2018)

    ADS  Google Scholar 

  8. Y.C. Liang, P. Qin, H.T. Jiang, L.Z. Zhang, J. Zhang, C. Tang, AIP Adv. 8, 045305 (2018)

    ADS  Google Scholar 

  9. P.R. Jothi, K. Yubuta, B.P.T. Fokwa, Adv. Mater. 30, 1704181 (2018)

    Google Scholar 

  10. S. Rou, K.S.R. Chandran, J. Am. Ceram. Soc. 101, 4308 (2018)

    Google Scholar 

  11. S.N. Dub, S.M. Sichkar, V.A. Belous, G.N. Tolmacheva, P.I. Loboda, Y.I. Bogomol, G.P. Kysla, J. Superhard Mater. 39, 308 (2017)

    Google Scholar 

  12. Q. Gu, G. Krauss, W. Steurer, Adv. Mater. 20, 3620 (2008)

    Google Scholar 

  13. H.Y. Chung, J.M. Yang, S.H. Tolbert, R.B. Kanber, J. Mater. Res. 23, 1797 (2008)

    ADS  Google Scholar 

  14. H.Y. Chung, M.B. Weinberger, J.M. Yang, S.H. Tolbert, R.B. Kaner, Appl. Phys. Lett. 92, 261904 (2008)

    ADS  Google Scholar 

  15. X. Zhang, G.E. Hilmas, W.G. Fahrenholtz, Mater. Lett. 62, 4251 (2008)

    Google Scholar 

  16. H.Y. Chung, M.B. Weinberger, J.B. Levine et al., Science 316, 436 (2007)

    ADS  Google Scholar 

  17. R. Mohammadi, M. Xie, A.T. Lech, J. Am. Chem. Soc. 134, 20660 (2012)

    Google Scholar 

  18. R. Mohammadi, A.T. Lech, M. Xiel, Proc. Natl. Acad. Sci. U.S.A. 108, 10958 (2011)

    ADS  Google Scholar 

  19. B. Wang, Y.X. Wang, J. Alloys Compd. 573, 20 (2013)

    Google Scholar 

  20. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    ADS  Google Scholar 

  21. W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)

    ADS  Google Scholar 

  22. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    ADS  Google Scholar 

  23. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    ADS  Google Scholar 

  24. A. Togo, I. Tanaka, Scr. Mater. 108, 1 (2015)

    Google Scholar 

  25. R. Hill, Proc. Phys. Soc. 65, 349 (1952)

    ADS  Google Scholar 

  26. Y. Pan, W.T. Zheng, W.M. Guan, J. Solid State Chem. 207, 29 (2013)

    ADS  Google Scholar 

  27. M. Zhang, H. Yan, G. Zhan, J. Phys. Chem. C 116, 4293 (2012)

    Google Scholar 

  28. X. Zhang, E. Zhao, Z. Wu, Comput. Mater. Sci. 95, 377 (2014)

    Google Scholar 

  29. Y.X. Wang, Appl. Phys. Lett. 91, 101904 (2007)

    ADS  Google Scholar 

  30. H.Y. Gou, L. Hou, J.W. Zhang, H. Li, G.F. Sun, F.M. Gao, Appl. Phys. Lett. 88, 221904 (2006)

    ADS  Google Scholar 

  31. F. Brich, Phys. Rev. 71, 809 (1947)

    ADS  Google Scholar 

  32. Mattesini, R. Ahuja, B. Johansson, Phys. Rev. B 68, 184108 (2003)

    ADS  Google Scholar 

  33. D. Errandonea, Ch. Ferrer-Roca, D. Martínez-Garcia, A. Segura, O. Gomis, A. Muñoz, P. Rodríguez-Hernández, J. López-Solano, S. Alconchel, F. Sapiña, Phys. Rev. B 82, 174105 (2010)

    ADS  Google Scholar 

  34. D. Errandonea, J. Ruiz-Fuertes, J.A. Sans, D. Santamaría-Perez, O. Gomis, A. Gómez, F. Sapiña, Phys. Rev. B 85, 144103 (2012)

    ADS  Google Scholar 

  35. M. Born, K. Huang,Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, UK, 1956)

  36. C.X. Li, Y.H. Duan, W.C. Hu, J. Alloys Compd. 619, 66 (2015)

    Google Scholar 

  37. Q. Wei, C.Y. Zhao, M.G. Zhang, H.Y. Yan, B. Wei, Phys. Lett. A 383, 2429 (2019)

    ADS  Google Scholar 

  38. S.F. Pugh, Philos. Mag. 45, 823 (1954)

    Google Scholar 

  39. M. Zhang, H. Yan, Q. Wei, J. Alloys Compd. 774, 918 (2019)

    Google Scholar 

  40. R. Hill, Proc. Phys. Soc. Sect. A 65, 349 (1952)

    ADS  Google Scholar 

  41. X.Q. Chen, H. Niu, D. Li, Y. Li, Intermetallics 19, 1275 (2011)

    Google Scholar 

  42. Y. Tian, B. Xu, Z. Zhao, Int. J. Refract. Met. Hard Mater. 33, 93 (2012)

    Google Scholar 

  43. J.F. Nye,Physical Properties of Crystals (Oxford University Press, Oxford, 1985)

  44. R.F.S. Hearmon, A.A. Maradudin, Phys. Today 14, 48 (1961)

    Google Scholar 

  45. W.C. Hu, Y. Liu, D.J. Li, X.Q. Zeng, C.S. Xu, Comput. Mater. Sci. 83, 27 (2014)

    Google Scholar 

  46. H.Z. Fu, X.K. Chen, J. Fu, Y.M. Ma, J. Mater. Sci. 48, 4284 (2013)

    ADS  Google Scholar 

  47. F. Chu, M. Lei, S.A. Maloy, J.J. Petrovic, T.E. Mitchell, Acta Mater. 44, 3035 (1996)

    Google Scholar 

  48. M.A. Blanco, E. Francisco, V. Luana, Comput. Phys. Commun. 158, 57 (2004)

    ADS  Google Scholar 

  49. X.K. Liu, Q.J. Feng, B. Tang, J. Zheng, W. Zhou, J.T. Tian, J. Wang, RSC Adv. 9, 5302 (2019)

    Google Scholar 

  50. Z.M. Liao, P. Huai, W.J. Qiu, X.Z. Ke, W.Q. Zhang, Z.Y. Zhu, J. Nucl. Mater. 454, 142 (2014)

    ADS  Google Scholar 

  51. Z.G. Mei, A.M. Yacout, Comput. Mater. Sci. 158, 26 (2019)

    Google Scholar 

  52. J. Feng, B. Xiao, R. Zhou, P. Wei, D.R. Clark, Acta Mater. 60, 3380 (2012)

    Google Scholar 

  53. X.Y. Zhang, L. Chen, M.Z. Ma, Y. Zhu, S.H. Zhang, R.P. Liu, J. Appl. Phys. 109, 113523 (2011)

    ADS  Google Scholar 

  54. X.M. Tao, P. Jund, C. Colinet, J.C. Tedenac, Phys. Rev. B 80, 104103 (2009)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Li Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, JL., Wu, YL., Fu, ZF. et al. Structural, mechanical, and thermodynamic properties of R-3m ReB4 under high pressure. Eur. Phys. J. B 92, 206 (2019). https://doi.org/10.1140/epjb/e2019-100331-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100331-7

Keywords

Navigation