Skip to main content
Log in

Polymer translocation across an oscillating nanopore: study of several distribution functions of relevant Brownian functionals

Brownian functionals of polymer translocation across oscillating nanopore

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, we study polymer translocation dynamics across an oscillating nanopore by proposing and inspecting several probability distribution functions (PDFs) of relevant Brownian functionals which specify the translocation across the nanopore. We model such translocation process by an overdamped Langevin equation of collective variable x. We introduce several probability distribution functions (PDFs) to identify the translocation process. We consider elegant backward Fokker-Planck method to derive analytically closed form expressions of several PDFs associated with such stochastic process. For instance, an important quantity for translocation processes is the first passage time, i.e. the time the molecule takes to cross the nanopore with initial collective value of the molecule x0. We derive analytical expressions for: (i) the PDF P(tf|x0) of the first passage time tf which specify the lifetime of protein translocation process, (ii) the PDF P(A|x0) of the area A till the first passage time and it provides us numerous valuable information about the average size and reactivity of the process, and (iii) the PDF P(M) associated with the maximum value of collective mode, M, of the translocation process before the first passage time. Our analysis is limited to a regime where both drift and diffusion have the same periodic time dependence with a constant ratio between them. We further confirm our analytical predictions by computing the same PDFs with direct numerical simulations of the corresponding Langevin equation. We obtain a very good agreement of our theoretical predictions with the numerically simulated results. Finally, several nontrivial scaling behaviour in the asymptotic limits for the above mentioned PDFs are predicted, which can be verified further from experimental observation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Cecconi, M.A. Shahzad, U.M.B. Marconi, A. Vulpiani, Phys. Chem. Chem. Phys. 19, 11260 (2017)

    Google Scholar 

  2. R. Maillard, G. Chistol, M. Sen, M. Righini, J. Tan, C.M. Kaiser, C. Hodges, A. Martin, C. Bustamante, Cell 145, 459 (2011)

    Google Scholar 

  3. T. Menais, S. Mossa, A. Buhot, Sci. Rep. 6, 38558 (2016)

    ADS  Google Scholar 

  4. K. Briggs, G. Madejski, M. Magill, K. Kastritis, H.W. de Haan, J.L. McGrath, V. Tabard-Coss, Nano Lett. 18, 660 (2018)

    ADS  Google Scholar 

  5. J.A. Cohen, A. Chaudhuri, R. Golestanian, J. Chem. Phys. 137, 204911 (2012)

    ADS  Google Scholar 

  6. J.A. Cohen, A. Chaudhuri, R. Golestanian, Phys. Rev. Lett. 107, 238102 (2011)

    ADS  Google Scholar 

  7. J. Wang, Y. Wang, K. Luo, J. Chem. Phys. 142, 084901 (2015)

    ADS  Google Scholar 

  8. T. Ikonen, J. Shin, W. Sung, T. Ala-Nissila, J. Chem. Phys. 136, 205104 (2012)

    ADS  Google Scholar 

  9. J. Sarabadani, T. Ikonen, T. Ala-Nissila, J. Chem. Phys. 143, 074905 (2015)

    ADS  Google Scholar 

  10. A. Fiasconaro, J.J. Mazo, F. Falo, Phys. Rev. E 91, 022113 (2015)

    ADS  Google Scholar 

  11. A. Meller, J. Phys.: Condens. Matter 15, R581 (203)

  12. A. Milchev, J. Phys.: Condens. Matter 23, 103101 (2011)

    ADS  Google Scholar 

  13. Z. Zhang, H. Chen, Z. Hou, J. Chem. Phys. 137, 044904 (2012)

    ADS  Google Scholar 

  14. D. Huh, K. Mills, X. Zhu, M.A. Burns, M.D. Thouless, S. Takayama, Nat. Mater. 6, 424 (2007)

    ADS  Google Scholar 

  15. P. Fanzio, C. Manneschi, E. Angeli, V. Mussi, G. Firpo, L. Ceseracciu, L. Repetto, U. Valbusa, Sci. Rep. 2, 791 (2012)

    ADS  Google Scholar 

  16. D. Fologea, J. Uplinger, B. Thomas, D.S. McNabb, J. Li, Nano Lett. 5, 1734 (2005)

    ADS  Google Scholar 

  17. I. Hulea, A. Pronin, H. Brom, Appl. Phys. Lett. 86, 252107 (2005)

    ADS  Google Scholar 

  18. C.C. Harrell, Y. Choi, L.P. Horne, L.A. Baker, Z.S. Siwy, C.R. Martin, Langmuir 22, 10837 (2006)

    Google Scholar 

  19. Polymers in Confined Geometries, edited by S. Granick (Spring, 1999), Vol. 138

  20. M. Muthukumar,Polymer Translocation (CRC Press, Florida, 2011)

  21. X. Shi, R.W. Hammond, M.D. Morris, Anal. Chem. 67, 3219 (1995)

    Google Scholar 

  22. S.N. Majumdar, Curr. Sci. 89, 2076 (2005)

    Google Scholar 

  23. J. Randon-Furling, S.N. Majumdar, J. Stat. Mech.: Theory Exp. 2007, P10008 (2007)

    Google Scholar 

  24. E. Urdapilleta, Phys. Rev. E 83, 021102 (2011)

    ADS  Google Scholar 

  25. J. Benda, L. Maler, A. Longtin, J. Neurophysiol. 104, 2806 (2010)

    Google Scholar 

  26. B. Lindner, A. Longtin, J. Theor. Biol. 232, 505 (2005)

    Google Scholar 

  27. S. Kumar, G. Mishra, Phys. Rev. Lett. 110, 258102 (2013)

    ADS  Google Scholar 

  28. S. Kumar, R. Kumar, W. Janke, Phys. Rev. E 93, 010402(R) (2016)

    ADS  Google Scholar 

  29. B.S. Alexandrov, V. Gelev, A.R. Bishop, A. Usheva, K.Ø. Rasmussen, Phys. Lett. A 374, 1214 (2010)

    ADS  Google Scholar 

  30. E.S. Swanson, Phys. Rev. E 83, 040901(R) (2011)

    ADS  Google Scholar 

  31. A. Molini, P. Talkner, G.G. Katul, A. Porporatoa, Physica A 390, 1841 (2011)

    ADS  MathSciNet  Google Scholar 

  32. A. Dubey, M. Bandyopadhyay, Eur. Phys. J. B 91, 276 (2018)

    ADS  Google Scholar 

  33. A. Dubey, M. Bandyopadhyay, AIP Conf. Proc. 1942, 04001 (2018)

    Google Scholar 

  34. A. Dubey, M. Bandyopadhyay, AIP Conf. Proc. 2100, 020065 (2019)

    Google Scholar 

  35. M. Bandyopadhyay, S. Gupta, D. Segal, Phys. Rev. E 83, 031905 (2011)

    ADS  Google Scholar 

  36. M. Kac, Trans. Am. Math. Soc. 65, 1 (1949)

    Google Scholar 

  37. S.N. Majumdar, M.J. Kearney, Phys. Rev. E 76, 031130 (2007)

    ADS  Google Scholar 

  38. P.L. Krapivsky, S.N. Majumdar, A. Rosso, J. Phys. A 43, 315001 (2010)

    ADS  MathSciNet  Google Scholar 

  39. A. Hanke, R. Metzler, J. Phys. A 36, L473 (2003)

    ADS  Google Scholar 

  40. A. Bar, Y. Kafri, D. Mukamel, Phys.: Rev. Lett. 98, 038103 (2007)

    ADS  Google Scholar 

  41. A. Bar, Y. Kafri, D. Mukamel, J. Phys. Condens. Matter 21, 034110 (2009)

    Google Scholar 

  42. W. Sung, P.J. Park, Phys. Rev. Lett. 77, 783 (1996)

    ADS  Google Scholar 

  43. J.M. Polson, A.C. McCaffrey, J. Chem. Phys. 138, 174902 (2013)

    ADS  Google Scholar 

  44. F. Cecconi, M. Bacci, M. Chinappi, Protein Pept. Lett. 21, 8665 (2014)

    Google Scholar 

  45. H. Risken,The Fokker-Planck Equation: Methods of Solutions and Applications, 2nd edn. (Springer-Verlag, Berlin, 1989)

  46. C.W. Gardiner,Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences, 2nd edn. (Springer-Verlag, Berlin, 1985)

  47. N.G. van Kampen,Stochastic Processes in Physics and Chemistry (North-, Amsterdam, 2007)

  48. O. Krichevsky, G. Bonnet, Rep. Prog. Phys. 65, 251 (2002)

    ADS  Google Scholar 

  49. G. Altan-Bonnet, A. Libchaber, O. Krichevsky, Phys. Rev. Lett. 90, 138101 (2003)

    ADS  Google Scholar 

  50. A.C. Branka, D.M. Heyes, Phys. Rev. E 58, 2611 (1998)

    ADS  Google Scholar 

  51. A. Meller, J. Phys.: Condens. Matter 15, R581 (2003)

    ADS  Google Scholar 

  52. A. Meller, L. Nivon, D. Branton, Phys. Rev. Lett. 86, 3435 (2001)

    ADS  Google Scholar 

  53. S. Redner,A guide to first-passage processes (Cambridge University Press, Cambridge, UK, 2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malay Bandyopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, A., Bandyopadhyay, M. Polymer translocation across an oscillating nanopore: study of several distribution functions of relevant Brownian functionals. Eur. Phys. J. B 92, 251 (2019). https://doi.org/10.1140/epjb/e2019-100321-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100321-3

Keywords

Navigation