Skip to main content
Log in

Study of edge states and conductivity in spin-orbit coupled bilayer graphene

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present an elaborate and systematic study of the conductance properties of a zigzag bilayer graphene nanoribbon modeled by a Kane-Mele (KM) Hamiltonian. The interplay of the Rashba and the intrinsic spin-orbit couplings with the edge states, electronic band structures, charge and spin transport are explored in details. We have analytically derived the conditions for the edge states for a bilayer KM nanoribbon and show how these modes decay for lattice sites inside the bulk. It is particularly interesting to note that for a finite-size ribbon an even number of zigzag ribbon hosts a finite energy gap at the Dirac points, while the odd ones do not. This asymmetry is present both in presence and absence of a bias voltage that may exist between the layers. The interlayer Rashba spin-orbit coupling, along with the intralayer intrinsic spin-orbit and intralayer Rashba spin-orbit couplings seem to destroy the quantum spin Hall (QSH) phase where the QSH phase is identified by the presence of a conductance plateau (of magnitude 4e2h) in the vicinity of zero Fermi energy. The plateau is sensitive to the values of the spin-orbit coupling parameters. Further, the spin polarized conductance data reveal that a bilayer KM ribbon is found to be more efficient for spintronic applications compared to a monolayer graphene. Finally, a quick check with experiments is done via computing the effective mass of electrons.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, V. Grigoreva, A.A. Firsov, Science 306, 666 (2004)

    ADS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    ADS  Google Scholar 

  3. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    ADS  Google Scholar 

  4. V.P. Gusynin, S.G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005)

    ADS  Google Scholar 

  5. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 620 (2006)

    Google Scholar 

  6. X. Du, I. Skachko, A. Barker, E.Y. Andrei, Nat. Nanotechnol. 3, 491 (2008)

    ADS  Google Scholar 

  7. K.I. Bolotin, K.J. Sikes, J. Hone, H.L. Stormer, P. Kim, Phys. Rev. Lett. 101, 096802 (2008)

    ADS  Google Scholar 

  8. E.-J. Kan, Z. Li, J. Yang, J.G. Hou, Appl. Phys. Lett. 91, 243116 (2007)

    ADS  Google Scholar 

  9. X. Lin, J. Ni, Phys. Rev. B 84, 075461 (2011)

    ADS  Google Scholar 

  10. S.D. Sarma, S. Adam, E.H. Hwang, E. Rossi, Rev. Mod. Phys. 83, 407 (2011)

    ADS  Google Scholar 

  11. K.S. Novoselov, E. McCann, S.V. Morozov, V.I. Falḱo, M.I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A.K. Geim, Nat. Phys. 2, 177 (2006)

    Google Scholar 

  12. S. Ghosh, W. Bao, D.L. Nika, S. Subrina, E.P. Pokatilov, C.N. Lan, A.A. Balandin, Nat. Mater. 9, 555 (2010)

    ADS  Google Scholar 

  13. A.A. Balandin, Nat. Mater. 10, 569 (2011)

    ADS  Google Scholar 

  14. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Nat. Nanotechnol. 5, 722 (2010)

    ADS  Google Scholar 

  15. M. Neek-Amal, F.M. Peeters, Phys. Rev. B 81, 235421 (2010)

    ADS  Google Scholar 

  16. Y.Y. Zhang, C.M. Wang, Y. Cheng, Y. Xiang, Carbon 49, 4511 (2011)

    Google Scholar 

  17. P.R. Wallace, Phys. Rev. 71, 622 (1947)

    ADS  Google Scholar 

  18. E. McCann, V.I. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006)

    ADS  Google Scholar 

  19. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    ADS  Google Scholar 

  20. E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B. Lopes dos Santos, J. Nilsson, F. Guinea, A.K. Geim, A.H. Castro Neto, Phys. Rev. Lett. 99, 216801 (2007)

    ADS  Google Scholar 

  21. E.W. Hill, A.K. Geim, K.S. Novoselov, F. Schedin, P. Blake, IEEE Trans. Magn. 42, 2694 (2006)

    ADS  Google Scholar 

  22. M. Nishioka, A.M. Goldman, Appl. Phys. Lett. 90, 252505 (2007)

    ADS  Google Scholar 

  23. N. Tombros, C. Józsa, M. Popinciuc, H.T. Jonkman, B.J. van Wees, Nature 448, 571 (2007)

    ADS  Google Scholar 

  24. W.H. Wang, K. Pi, Y. Li, Y.F. Chiang, P. Wei, J. Shi, R.K. Kawakami, Phys. Rev. B 77, 020402 (2008)

    ADS  Google Scholar 

  25. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    ADS  Google Scholar 

  26. X.L. Qi, S.C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    ADS  Google Scholar 

  27. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005)

    ADS  Google Scholar 

  28. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005)

    ADS  Google Scholar 

  29. H. Min, J.E. Hill, N.A. Sinitsyn, B.R. Sahu, L. Kleinman, A.H. MacDonald, Phys. Rev. B 74, 165310 (2006)

    ADS  Google Scholar 

  30. Y.G. Yao, F. Ye, X.-L. Qi, S.-C. Zhang, Z. Fang, Phys. Rev. B 75, 041401 (2007)

    ADS  Google Scholar 

  31. C. Weeks, J. Hu, J. Alicea, M. Franz, R. Wu, Phys. Rev. X 1, 021001 (2011)

    Google Scholar 

  32. B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, B. Aufray, Appl. Phys. Lett. 97, 223109 (2010)

    ADS  Google Scholar 

  33. P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012)

    ADS  Google Scholar 

  34. L. Chen, C.C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. Yao, K. Wu, Phys. Rev. Lett. 109, 056804 (2012)

    ADS  Google Scholar 

  35. W.F. Tsai, C.Y. Huang, T.R. Chang, H. Lin, H.T. Jeng, A. Bansil, Nat. Commun. 4, 1500 (2013)

    ADS  Google Scholar 

  36. X. Wang, P. Wang, G. Bian, T.C. Chiang, Europhys. Lett. 3, 115 (2016)

    Google Scholar 

  37. J. Ding, Z.H. Qiao, W.X. Feng, Y.G. Yao, Q. Niu, Phys. Rev. B 84, 195444 (2011)

    ADS  Google Scholar 

  38. H.B. Zhang, C. Lazo, S. Blügel, S. Heinze, Y. Mokrousov, Phys. Rev. Lett. 108, 056802 (2012)

    ADS  Google Scholar 

  39. F. Guinea, New J. Phys. 12, 083063 (2010)

    ADS  Google Scholar 

  40. W. Yao, S.A. Yang, Q. Niu, Phys. Rev. Lett. 102, 096801 (2009)

    ADS  Google Scholar 

  41. Z. Qiao, H. Jiang, X. Li, Y. Yao, Q. Niu, Phys. Rev. B 85, 115439 (2012)

    ADS  Google Scholar 

  42. W. Li, R. Tao, J. Phys. Soc. Jpn. 81, 024704 (2012)

    ADS  Google Scholar 

  43. Z. Qiao, X. Li, W.-K. Tse, H. Jiang, Y. Yao, Q. Niu, Phys. Rev. B 87, 125405 (2013)

    ADS  Google Scholar 

  44. H. Pan, X. Li, Z. Qiao, C.-C. Liu, Y. Yao, S.A. Yang, New J. Phys. 16, 123015 (2014)

    ADS  Google Scholar 

  45. Z.H. Qiao, W.K. Tse, H. Jiang, Y.G. Yao, Q. Niu, Phys. Rev. Lett. 107, 256801 (2011)

    ADS  Google Scholar 

  46. R. van Gelderen, C.M. Smith, Phys. Rev. B 81, 125435 (2010)

    ADS  Google Scholar 

  47. S. Das Sarma, E.H. Hwang, E. Rossi, Phys. Rev. B 81, 161407 (2010)

    ADS  Google Scholar 

  48. K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996)

    ADS  Google Scholar 

  49. K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrist, Phys. Rev. B 59, 8271 (1999)

    ADS  Google Scholar 

  50. K. Wakabayashi, M. Sigrist, M. Fujita, J. Phys. Soc. Jpn. 67, 2089 (1998)

    ADS  Google Scholar 

  51. E.V. Castro, N.M.R. Peres, J.M.B. Lopes dos Santos, A.H. Castro Neto, F. Guinea, Phys. Rev. Lett. 100, 026802 (2008)

    ADS  Google Scholar 

  52. F.J. dos Santos, D.A. Bahamon, R.B. Muniz, K. McKenna, E.V. Castro, J. Lischner, A. Ferreira, Phys. Rev. B 98, 081407(R) (2018)

    ADS  Google Scholar 

  53. P. Sinha, S. Ganguly, S. Basu, Physica E 103, 314 (2018)

    ADS  Google Scholar 

  54. Y. Li, E. Zhang, B. Gong, S. Zhang, J. Nanomater. 2011, 364897 (2011)

    Google Scholar 

  55. R. Landauer, IBM J. Res. Dev. 1, 223 (1957)

    Google Scholar 

  56. R. Landauer, Philos. Mag. 21, 863 (1970)

    ADS  Google Scholar 

  57. C. Caroli, R. Combescot, P. Nozieres, D. Saint-James, J. Phys. C: Solid State Phys. 4, 916 (1971)

    ADS  Google Scholar 

  58. D.S. Fisher, P.A. Lee, Phys. Rev. B 23, 6851 (1981)

    ADS  MathSciNet  Google Scholar 

  59. S. Datta,Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)

  60. P.H. Chang, F. Mahfouzi, N. Nagaosa, B.K. Nikolic, Phys. Rev. B 89, 195418 (2014)

    ADS  Google Scholar 

  61. C.W. Groth, M. Wimmer, A.R. Akhmerov, X. Waintal, New J. Phys. 16, 063065 (2014)

    ADS  Google Scholar 

  62. H. Xu, T. Heinzel, I.V. Zozoulenko, Phys. Rev. B 80, 045308 (2009)

    ADS  Google Scholar 

  63. Q. Zhang, K.S. Chan, J. Li, Phys. Chem. Chem. Phys. 19, 6871 (2017)

    Google Scholar 

  64. Q. Zhang, Z. Lin, K.S. Chan, Appl. Phys. Lett. 102, 142407 (2013)

    ADS  Google Scholar 

  65. K. Zou, X. Hong, J. Zhu, Phys. Rev. B 84, 085408 (2011)

    ADS  Google Scholar 

  66. A.Z. Alzahrani, G.P. Srivastava, Braz. J. Phys. 39, 694 (2009)

    Google Scholar 

  67. J. Wang, R. Zhao, M. Yang, Z. Liu, Z. Liu, J. Chem. Phys. 138, 084701 (2013)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Priyanka Sinha or Saurabh Basu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, P., Basu, S. Study of edge states and conductivity in spin-orbit coupled bilayer graphene. Eur. Phys. J. B 92, 207 (2019). https://doi.org/10.1140/epjb/e2019-100287-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100287-6

Keywords

Navigation