Skip to main content
Log in

Induction strategies of the noncentrosymmetricity in centrosymmetric nonlinear optical nanocrystal processes

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The second harmonic generation (SHG) is one of the measures of the optical nonlinearity. However, the SHG is prevented by symmetry in a centrosymmetric material. Therefore, in order to observe the SHG it is necessary to form a noncentrosymmetric process in a centrosymmetric material. Noncentrosymmetric nanosize-material processes CdI2 are formed by doping it with the impurity copper, controlling the size of the crystal and crystal temperature, and by pumping with an IR laser beam. The noncentrosymmetricity in the processes are probed by the observation of SHG and the second-order optical susceptibility (χijk(2)) is calculated from the SHG data. The value of χijk(2) is found to depend fashionably on the impurity content of the nanomaterials: χijk(2) = C1 exp[-1∕2{(Si-C2)∕C3}2], where Si is the concentration of impurity of the type i (here Si is SCu), and C1, C2 and C3 are parameters whose values depend on the crystal temperature and thickness of the nanomaterials. A photoluminescence measurement supports the third-order nonlinearity (χijkl(3)) of the centrosymmetric CdI2 system and hence SHG in the induced processes. The results also show that a significant enhancement (from 0.37 pm/V to 0.83 pm/V) in the noncentrosymmetric response χijk(2) is achieved in nanomaterials with reduced sizes and at low temperatures. A recipe of the induction strategies of the noncentrosymmetricity in centrosymmetric nonlinear optical processes CdI2 is explored and the results are discussed. However, the findings resulting from this investigation show that cadmium iodide nanocrystals might have potential in applications as optoelectronic nanodevices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.F. Mott, E.A. Davis,Electronic Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1979)

  2. H. Mahr, inQuantum Electronics, edited by H. Rabin, C.L. Tang (Academic Press, New York, 1975)

  3. H. Haug,Optical Nonlinearities and Instabilities in Semiconductors (Academic Press, New York, 1988)

  4. J.C. Slater, Phys. Rev. 103, 1631 (1956)

    Article  ADS  Google Scholar 

  5. J. Bordas, J. Robertson, A. Jakobsson, J. Phys. C 11, 2607 (1978)

    Article  ADS  Google Scholar 

  6. J. Robertson, J. Phys. C 12, 4753 (1979)

    Article  ADS  Google Scholar 

  7. H. Nakagawa, M. Kitaura, Proc. SPIE 2362, 294 (1995)

    Article  ADS  Google Scholar 

  8. I.V. Kityk, S.A. Pyroha, T. Mydlarz, J. Kasperczyk, M. Czerwinski, Ferroelectrics 205, 107 (1998)

    Article  Google Scholar 

  9. M. Idrish Miah Higher-order optical nonlinearities in CdI2 and CdI2-Cu crystals, inThe First Conference on Advances in Optical Materials, October 12–15, Tucson, Arizona, USA, 2005

  10. M. Idrish Miah, J. Kasperczyk, Appl. Phys. Lett. 94, 053117 (2009)

    Article  ADS  Google Scholar 

  11. M. Idrish Miah, Opt. Mater. 18, 231 (2001)

    Article  ADS  Google Scholar 

  12. M. Idrish Miah, Opt. Mater. 25, 353 (2004)

    Article  ADS  Google Scholar 

  13. P.W. Bridgman, Proc. Am. Acad. Arts Sci. 81, 165 (1952)

    Article  Google Scholar 

  14. M. Idrish Miah, Phys. Lett. A 374, 75 (2009)

    Article  ADS  Google Scholar 

  15. M. Idrish Miah, J. Appl. Phys. 104, 064313 (2008)

    Article  ADS  Google Scholar 

  16. V. Gopalan, N.A. Sanford, J.A. Aust, K. Kitamura, Y. Furukawa, Crystal Growth, Characterization, and Domain Studies in Lithium Niobate and Lithium Tantalate Ferroelectrics, inHandbook of Advanced Electronic and Photonic Materials and Devices, edited by H.S. Nalwa (Elsevier, 2007), Vol. 4, Chap. 2, pp. 58–112

  17. M. Idrish Miah, Opt. Commun. 284, 5199 (2011)

    Article  ADS  Google Scholar 

  18. F. Adduci, A. Cingolani, R. Ferrara, M. Lugara, A. Minafra, Nuova Cimento B 38, 610 (1977)

    Article  ADS  Google Scholar 

  19. I.M. Catalano, A. Cingolani, R. Ferrara, M. Lepore, Helv. Phys. Acta 58, 329 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

This is a sole-authored paper, so the author has the whole contribution in investigating and writing the paper.

Corresponding author

Correspondence to Mohammad Idrish Miah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miah, M.I. Induction strategies of the noncentrosymmetricity in centrosymmetric nonlinear optical nanocrystal processes. Eur. Phys. J. B 92, 224 (2019). https://doi.org/10.1140/epjb/e2019-100262-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100262-9

Keywords

Navigation