Skip to main content
Log in

Phase-field modeling of γ-precipitate shapes in nickel-base superalloys and their classification by moment invariants

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We develop a phase-field model for the simulation of precipitate microstructure pattern formation in nickel-base superalloys. The model accounts for the local effects from inhomogeneous and anisotropic elastic deformations, which mainly result from the lattice misfit between the precipitates and matrix phase. Further, in each time-step, we consider the chemical driving force for precipitate ripening to instantaneously equilibrate to a homogeneous value, leading to conserved phase volumes. The model is applied to study the equilibrium shape of a 2D single γ-particle embedded in the γ-matrix with varying lattice misfit and γ/γ interface energies. Further, we apply the method of moment invariants to quantify the resulting equilibrium shapes of precipitates, which turns out to be a size independent characterization of the particle shape. Resulting values for the 2D moment invariants of experimental as well as simulated particle shapes are discussed and compared. Considering ideally spherical particles, we find that large values for the γ/γ-interface width lead to systematic deviations in the resulting moment invariants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.C. Reed,The Superalloys Fundamentals and Applications, 1st edn. (Cambridge University Press, New York, Cambridge, UK, 2006)

  2. E. Fleischmann, C.H. Konrad, J. Preußner, R. Völkl, E. Affeldt, U. Glatzel, Metall. Mater. Trans. A 46, 1125 (2015)

    Google Scholar 

  3. I. Steinbach, Modell. Simul. Mater. Sci. Eng. 17, 073001 (2009)

    ADS  Google Scholar 

  4. M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, R. Trivedi, Acta Mater. 57, 941 (2009)

    Google Scholar 

  5. Y. Wang, J. Li, Acta Mater. 58, 1212 (2010)

    Google Scholar 

  6. I. Steinbach, O. Shchyglo, Curr. Opin. Solid State Mater. Sci. 15, 87 (2011)

    ADS  Google Scholar 

  7. L. Nguyen, R. Shi, Y. Wang, M. De Graef, Acta Mater. 103, 322 (2016)

    Google Scholar 

  8. M. Cottura, Y. Le Bouar, B. Appolaire, A. Finel, Acta Mater. 94, 15 (2015)

    Google Scholar 

  9. A. Gaubert, M. Jouiad, J. Cormier, Y. Le Bouar, J. Ghighi, Acta Mater. 84, 237 (2015)

    Google Scholar 

  10. M.P. Gururajan, T.A. Abinandanan, Acta Mater. 55, 5015 (2007)

    Google Scholar 

  11. M. Fleck, F. Schleifer, M. Holzinger, U. Glatzel, Metall. Mater. Trans. A 49, 4146 (2018)

    Google Scholar 

  12. L.T. Mushongera, M. Fleck, J. Kundin, F. Querfurth, H. Emmerich, Adv. Eng. Mater. 17, 1149 (2015)

    Google Scholar 

  13. J. Goerler, I. Lopez-Galilea, L. Mujica Roncery, O. Shchyglo, W. Theisen, I. Steinbach, Acta Mater. 124, 151 (2017)

    Google Scholar 

  14. M.S. Bhaskar, Comput. Mater. Sci. 146, 102 (2018)

    Google Scholar 

  15. Y. Pang, Y. Li, X. Wu, W. Liu, Z. Hou, Int. J. Mater. Res. 106, 108 (2015)

    Google Scholar 

  16. A. Jokisaari, S. Naghavi, C. Wolverton, P.W. Voorhees, O. Heinonen, Acta Mater. 141, 273 (2017)

    Google Scholar 

  17. B. Bhadak, R. Sankarasubramanian, A. Choudhury, Metall. Mater. Trans. A 49, 5705 (2018)

    Google Scholar 

  18. S. Maitra, Proc. IEEE 67, 697 (1979)

    Google Scholar 

  19. M.K. Hu, IRE Trans. Inf. Theory 8, 179 (1962)

    Google Scholar 

  20. J. MacSleyne, J. Simmons, M. De Graef, Modell. Simul. Mater. Sci. Eng. 16, 045008 (2008)

    ADS  Google Scholar 

  21. J. MacSleyne, J. Simmons, M. De Graef, Acta Mater. 56, 427 (2008)

    Google Scholar 

  22. J. MacSleyne, M. Uchic, J. Simmons, M. De Graef, Acta Mater. 57, 6251 (2009)

    Google Scholar 

  23. P. Callahan, J. Simmons, M. De Graef, Modell. Simul. Mater. Sci. Eng. 21, 015003 (2012)

    ADS  Google Scholar 

  24. J. Van Sluytman, T. Pollock, Acta Mater. 60, 1771 (2012)

    Google Scholar 

  25. R. Rettig, N. Ritter, H. Helmer, S. Neumeier, R. Singer, Modell. Simul. Mater. Sci. Eng. 23, 035004 (2015)

    ADS  Google Scholar 

  26. A. Chowdhury, E. Kautz, B. Yener, D. Lewis, Comput. Mater. Sci. 123, 176 (2016)

    Google Scholar 

  27. S. Haas, A. Manzoni, F. Krieg, U. Glatzel, Entropy 21, 169 (2019)

    ADS  Google Scholar 

  28. M. Plapp, Phys. Rev. E 84, 031601 (2011)

    ADS  Google Scholar 

  29. K. Kassner, C. Misbah, J. Müller, J. Kappey, P. Kohlert, Phys. Rev. E 63, 036117 (2001)

    ADS  Google Scholar 

  30. M. Fleck, E.A. Brener, R. Spatschek, B. Eidel, Int. J. Mater. Res. 4, 462 (2010)

    Google Scholar 

  31. A. Durga, P. Wollants, N. Moelans, Modell. Simul. Mater. Sci. Eng. 21, 055018 (2013)

    ADS  Google Scholar 

  32. M. Fleck, L.T. Mushongera, D. Pilipenko, K. Ankit, H. Emmerich, Eur. Phys. J. Plus 126, 95 (2011)

    Google Scholar 

  33. M. Fleck, H. Federmann, E. Pogorelov, Comput. Mater. Sci. 153, 288 (2018)

    Google Scholar 

  34. B. Nestler, F. Wendler, M. Selzer, B. Stinner, H. Garcke, Phys. Rev. E 78, 011604 (2008)

    ADS  Google Scholar 

  35. P. Voorhees, G. McFadden, W. Johnson, Acta Metall. Mater. 40, 2979 (1992)

    ADS  Google Scholar 

  36. A. Finel, Y. Le Bouar, B. Dabas, B. Appolaire, Y. Yamada, T. Mohri, Phys. Rev. Lett. 121, 025501 (2018)

    ADS  Google Scholar 

  37. A. Bösch, H. Müller-Krumbhaar, O. Shochet, Z. Phys. B 97, 367 (1995)

    ADS  Google Scholar 

  38. K. Glasner, J. Comput. Phys. 174, 695 (2001)

    ADS  Google Scholar 

  39. M. Weiser, Appl. Numer. Math. 59, 1858 (2009)

    MathSciNet  Google Scholar 

  40. J. Eiken, IOP Conf. Ser. 33, 012105 (2012)

    Google Scholar 

  41. U. Glatzel, M. Feller-Kniepmeier, Scr. Metall. 23, 1839 (1989)

    Google Scholar 

  42. T. Pollock, A. Argon, Acta Metall. Mater. 42, 1859 (1994)

    Google Scholar 

  43. M. Probst-Hein, A. Dlouhy, G. Eggeler, Acta Mater. 47, 2497 (1999)

    Google Scholar 

  44. J. Preußner, Y. Rudnik, R. Völkl, U. Glatzel, Z. Metallkd 96, 595 (2005)

    Google Scholar 

  45. A. Jokisaari, P. Voorhees, J. Guyer, J. Warren, O. Heinonen, Comput. Mater. Sci. 149, 336 (2018)

    Google Scholar 

  46. K. Thornton, N. Akaiwa, P. Voorhees, Acta Mater. 52, 1353 (2004)

    Google Scholar 

  47. R. Völkl, U. Glatzel, M. Feller-Kniepmeier, Acta Mater. 46, 4395 (1998)

    Google Scholar 

  48. A.J. Ardell, V. Ozolins, Nat. Mater. 4, 309 (2005)

    ADS  Google Scholar 

  49. B. Sonderegger, E. Kozeschnik, Metall. Mater. Trans. A 40, 499 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in the discussion of the results and the preparation of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Markus Holzinger.

Additional information

Contribution to the Topical Issue “Multiscale Materials Modeling”, edited by Yoji Shibutani, Shigenobu Ogata, and Tomotsugu Shimokawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holzinger, M., Schleifer, F., Glatzel, U. et al. Phase-field modeling of γ-precipitate shapes in nickel-base superalloys and their classification by moment invariants. Eur. Phys. J. B 92, 208 (2019). https://doi.org/10.1140/epjb/e2019-100256-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100256-1

Navigation