Skip to main content
Log in

Study of crystallization pathway and heterogeneous dynamics in supercooled liquid and amorphous iron

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Supercooled liquid and amorphous iron (Fe) was investigated by means of molecular dynamics (MD) simulation. The crystallization was analyzed through pair radial distribution function, bond angle distribution, coordination number and transition to different atom types. Amorphous Fe possesses a large number of icosahedron type atoms which play a role in preventing of transformation into the bcc phase. The structure of amorphous Fe slightly changes during the relaxation time. The crystallization occurred when Fe was annealed at 950 K for 1.6 × 107 steps. It is found that transitions to bcc-type do not happen arbitrarily at any location in the system, but instead, they are concentrated in a non-equilibrium region. Moreover, the crystallization pathway comprises intermediate states between amorphous and crystalline ones. At the early stage, a large cluster of crystal atom formed is located in system. Then, this cluster grows up rapidly. At the final stage, the cluster of crystal atom is located in a well-equilibrium region covered a major part of the system. We found that unlike amorphous Fe, the structure of crystalline Fe is strongly heterogeneous and consists of separate regions with different local microstructure. Heterogeneous dynamics (HD) in the supercooled liquid and amorphous Fe was also examined through the distribution of mobile and immobile atoms. It is found that there is a connection between local structure, crystallization pathway and HD in the system. Mobile and immobile atoms have a tendency to segregate into separate regions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Wang, C. Peng, Y. Wang, Y. Zhang, Phys. Lett. A 350, 69 (2006)

    Article  ADS  Google Scholar 

  2. M.D. Ediger, C.A. Angell, S.R. Nagel, J. Phys. Chem. 100, 13200 (1996)

    Article  Google Scholar 

  3. M.I. Mendelev, J. Schmalian, C.Z. Wang, J.R. Morris, K.M. Ho, Phys. Rev. B 74, 104206 (2006)

    Article  ADS  Google Scholar 

  4. N. Jakse, J.F. Wax, A. Pasturel, J. Chem. Phys. 126, 234508 (2007)

    Article  ADS  Google Scholar 

  5. M. Li, C.Z. Wang, M.I. Mendelev, K.M. Ho, Phys. Rev. B 77, 184202 (2008)

    Article  ADS  Google Scholar 

  6. F.F. Chen, H.F. Zhang, F.X. Qin, Z.Q. Hu, J. Chem. Phys. 120, 1826 (2004)

    Article  ADS  Google Scholar 

  7. H. Pang, Z.H. Jin, K. Lu, Phys. Rev. B 67, 094113 (2003)

    Article  ADS  Google Scholar 

  8. Y. Zhang, L. Wang, W. Wang, J. Phys.: Condens. Matter 19, 196106 (2007)

    ADS  Google Scholar 

  9. V. Van Hoang, N.T. Long, D.N. Son, Comput. Mater. Sci. 95, 491 (2014)

    Article  Google Scholar 

  10. Q.L. Cao, D.H. Huang, J.S. Yang, M.J. Wan, F.H. Wang, Physica B 450, 136 (2014)

    Article  ADS  Google Scholar 

  11. A. Zhu, G.J. Shiflet, S.J. Poon, Acta Mater. 56, 3550 (2008)

    Article  Google Scholar 

  12. V. Van Hoang, S.K. Oh, Phys. Rev. E 70, 061203 (2004)

    Article  ADS  Google Scholar 

  13. G. Diezemann, J. Non-Cryst. Solids 352, 4934 (2006)

    Article  ADS  Google Scholar 

  14. U. Tröltzsch, O. Kanoun, H.R. Tränkler, Electrochim. Acta 51, 1664 (2006)

    Article  Google Scholar 

  15. M.J. Jenkins, J.N. Hay, Comput. Theor. Polym. Sci. 11, 283 (2001)

    Article  Google Scholar 

  16. A. Kerrache, V. Teboul, D. Guichaoua, A. Monteil, J. Non-Cryst. Solids 322, 41 (2003)

    Article  ADS  Google Scholar 

  17. S. Ozgen, E. Duruk, Mater. Lett. 58, 1071 (2004)

    Article  Google Scholar 

  18. S. An, J. Li, Y. Li, S. Li, Q. Wang, B. Liu, Sci. Rep. 6, 31062 (2016)

    Article  ADS  Google Scholar 

  19. L.L. Zhou, R.Y. Yang, Z.A. Tian, Y.F. Mo, R.S. Liu, J. Alloys Compd. 690, 633 (2017)

    Article  Google Scholar 

  20. P.H. Kien, M.T. Lan, N.T. Dung, P.K. Hung, Int. J. Mod. Phys. B 28, 1450155 (2014)

    Article  ADS  Google Scholar 

  21. K. Kodama, S. Iikubo, T. Taguchi, S.I. Shamoto, Acta Crystallogr. Sect. A 62, 444 (2006)

    Article  ADS  Google Scholar 

  22. V. Van Hoang, N.H. Cuong, Physica B 404, 340 (2009)

    Article  ADS  Google Scholar 

  23. J.P. Lauriat, J. Non-Cryst. Solids 55, 77 (1983)

    Article  ADS  Google Scholar 

  24. J. Han, C. Wang, X. Liu, Y. Wang, Z.K. Liu, J. Jiang, ChemPhysChem 16, 3916 (2015)

    Article  Google Scholar 

  25. K.S. Suslick, S.B. Choe, A.A. Cichowlas, M.W. Grinstaff, Nature 353, 414 (1991)

    Article  ADS  Google Scholar 

  26. D.W. Qi, S. Wang, Phys. Rev. B 44, 884 (1991)

    Article  ADS  Google Scholar 

  27. N. Jakse, O. Le Bacq, A. Pasturel, Phys. Rev. B 70, 174203 (2004)

    Article  ADS  Google Scholar 

  28. N. Jakse, A. Pasturel, J. Chem. Phys. 120, 6124 (2004)

    Article  ADS  Google Scholar 

  29. Y. Zhang, L. Wang, W. Wang, Phys. Lett. A 372, 690 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Huu Kien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kien, P.H. Study of crystallization pathway and heterogeneous dynamics in supercooled liquid and amorphous iron. Eur. Phys. J. B 92, 234 (2019). https://doi.org/10.1140/epjb/e2019-100250-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100250-7

Keywords

Navigation