Skip to main content
Log in

Nonlocal multiscale modeling of deformation behavior of polycrystalline copper by second-order homogenization method

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Engineering materials usually exhibit heterogeneity such as that observed in the polycrystalline structure of metals, and this heterogeneity affects the nonuniform deformation of a material. In this study, the micro- to macroscopic nonuniform deformation of polycrystalline copper specimen with a curved gage section is evaluated by a finite element method (FEM) simulation based on the second-order homogenization method (2nd-HM). The effects of the microstructure size and macroscopic stress gradient on the nonuniform deformation of the material are then investigated by comparing the simulation and experimental results. A two-dimensional plane strain polycrystalline microstructure was periodically applied to all the integration points in the macrostructure; the anisotropic deformation of the crystal grains is represented by the conventional crystalline plasticity constitutive equation. The computational results indicate that the interaction between nonuniform deformation on the micro and macroscopic scales induces a slight size effect in the material. However, the FEM simulation based on the 2nd-HM could not predict the decrease in the macroscopic strain concentration in the specimens with large crystalline grains, which was observed in the experimental studies, because of random strain localization resulting from the microscopic heterogeneity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Sutton, W.J. Walters, W.H. Peters, W.F. Ranson, S.R. McNeill, Image Vision Comput. 1, 133 (1983)

    Google Scholar 

  2. M.A. Sutton, M. Cheng, W.H. Peters, Y.J. Chao, S.R. McNeill, Image Vision Comput. 4, 143 (1986)

    Google Scholar 

  3. D. Raabe, M. Sachtleber, Z. Zhao, F. Roters, S. Zaefferer, Acta Mater. 49, 3433 (2001)

    Google Scholar 

  4. E. Parsons, M.C. Boyce, D.M. Parks, Polymer 45, 2665 (2004)

    Google Scholar 

  5. M. Uchida, N. Tada, Int. J. Plast. 27, 2085 (2011)

    Google Scholar 

  6. M. Uchida, T. Ueno, T. Abe, Y. Kaneko, Adv. Exp. Mech. 2, 76 (2017)

    Google Scholar 

  7. M. Uchida, A. Taniguchi, Y. Kaneko, Adv. Exp. Mech. 3, 135 (2018)

    Google Scholar 

  8. A. Taniguchi, T. Maeyama, M. Uchida, Y. Kaneko, Key Eng. Mater. 794, 246 (2019)

    Google Scholar 

  9. S. Avril, F. Pierron, M.A. Sutton, J. Yan, Mech. Mater. 40, 729 (2008)

    Google Scholar 

  10. P. Wang, F. Pierron, O.T. Thomsen, Exp. Mech. 53, 1001 (2013)

    Google Scholar 

  11. E. Cosserat, F. Cosserat,Théorie des corps déformables, Librairie Scientifique (A. Hermann et Fils, Paris, 1909) [reprint: Hermann Librairie Scientique, Paris, 2009]

  12. R.A. Toupin, Arch. Ration Mech. Anal. 11, 385 (1962)

    Google Scholar 

  13. R.D. Mindlin, Arch. Ration Mech. Anal. 16, 51 (1964)

    Google Scholar 

  14. R.D. Mindlin, N.N. Eshel, Int. J. Solids Struct. 4, 109 (1968)

    Google Scholar 

  15. E.C. Aifantis, Int. J. Eng. Sci. 30, 1279 (1992)

    Google Scholar 

  16. E.C. Aifantis, Int. J. Eng. Sci. 33, 2161 (1995)

    Google Scholar 

  17. Y. Tomita, Appl. Mech. Rev. 47, 171 (1994)

    ADS  Google Scholar 

  18. A. Zervos, P. Papanastasiou, I. Vardoulakis, Int. J. Numer. Methods Eng. 50, 1369 (2001)

    Google Scholar 

  19. R.K.A. Al-Rub, G.Z. Voyiadjis, Int. J. Numer. Methods Eng. 63, 603 (2005)

    Google Scholar 

  20. N.A. Fleck, J.W. Hutchinson, J. Mech. Phys. Solids 41, 1825 (1993)

    ADS  MathSciNet  Google Scholar 

  21. N.A. Fleck, J.W. Hutchinson, Adv. Appl. Mech. 33, 295 (1997)

    Google Scholar 

  22. H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, J. Mech. Phys. Solids 47, 1239 (1999)

    ADS  MathSciNet  Google Scholar 

  23. H. Gao, Y. Huang, Int. J. Solids Struct. 38, 2615 (2001)

    Google Scholar 

  24. M.E. Gurtin, J. Mech. Phys. Solids 48, 989 (2000)

    ADS  MathSciNet  Google Scholar 

  25. M.E. Gurtin, J. Mech. Phys. Solids 50, 5 (2002)

    ADS  MathSciNet  Google Scholar 

  26. M.E. Gurtin, Int. J. Plasticity 19, 47 (2003)

    Google Scholar 

  27. V. Kouznetsova, M.G.D. Geers, W.A.M. Brekelmans, Int. J. Numer. Methods Eng. 54, 1235 (2002)

    Google Scholar 

  28. V. Kouznetsova, M.G.D. Geers, W.A.M. Brekelmans, Comput. Methods Appl. Mech. Eng. 193, 5525 (2004)

    ADS  Google Scholar 

  29. Ł. Kaczmarczyk, C.J. Pearce, N. Biæaniæ, Int. J. Numer. Methods Eng. 74, 509 (2008)

    Google Scholar 

  30. Ł. Kaczmarczyk, C.J. Pearce, N. Biæaniæ, Comput. Struct. 88, 1383 (2010)

    Google Scholar 

  31. X. Yuan, Y. Tomita, T. Andou, Mech. Res. Commun. 35, 126 (2008)

    Google Scholar 

  32. A. Bacigalupo, L. Gambarotta, ZAMM - J. Appl. Math. Mech. 90, 796 (2010)

    Google Scholar 

  33. A. Bacigalupo, Meccanica 49, 1407 (2014)

    MathSciNet  Google Scholar 

  34. T. Lesièar, Z. Tonkoviæ, J. Soriæ, Comput. Mech. 54, 425 (2014)

    MathSciNet  Google Scholar 

  35. M. Uchida, N. Tada, Key Eng. Mater. 626, 74 (2014)

    Google Scholar 

  36. M. Uchida, K. Suzuki, Y. Kaneko, Key Eng. Mater. 725, 456 (2016)

    Google Scholar 

  37. P. Trovalusci, M. Ostoja-Starzewski, M.L.D. Bellis, A. Murrali, Eur. J. Mech. A: Solids 49, 396 (2015)

    ADS  Google Scholar 

  38. E.W.C. Coenen, V.G. Kouznetsova, M.G.D. Geers, Int. J. Numer. Methods Eng. 83, 1180 (2010)

    Google Scholar 

  39. G. Rosi, A. Auffray, Wave Motion 63, 120 (2016)

    Google Scholar 

  40. H. Reda, I. Goda, J.F. Ganghoffer, G. L’Hostic, H. Lakiss, Compos. Struct. 161, 540 (2017)

    Google Scholar 

  41. R. Hu, C. Oskay, Comput. Methods Appl. Mech. Eng. 342, 1 (2018)

    ADS  Google Scholar 

  42. J. Li, Int. J. Solids Struct. 48, 3336 (2011)

    Google Scholar 

  43. M. Uchida, Y. Kaneko, Heliyon 4, e00578 (2018)

    Google Scholar 

  44. J. Marty, J. Réthoré, Int. J. Solids Struct. 88–89, 263 (2016)

    Google Scholar 

  45. D. Peirce, R.J. Asaro, A. Needleman, Acta Metall. 31, 1951 (1983)

    Google Scholar 

  46. J.W. Hutchinson, Proc. R. Soc. London A 348, 101 (1976)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Uchida.

Additional information

Contribution to the Topical Issue “Multiscale Materials Modeling”, edited by Yoji Shibutani, Shigenobu Ogata, and Tomotsugu Shimokawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchida, M., Kaneko, Y. Nonlocal multiscale modeling of deformation behavior of polycrystalline copper by second-order homogenization method. Eur. Phys. J. B 92, 189 (2019). https://doi.org/10.1140/epjb/e2019-100231-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100231-4

Navigation