Skip to main content
Log in

Magnetic field controlled induced transparency by Autler–Townes splitting in pseudo-elliptic quantum ring

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We theoretically investigated the effects of magnetic field and of the parameters of control and probe lasers on the transparency induced through Autler–Townes splitting (ATS) in GaAs/GaAlAs pseudo-elliptic quantum ring. We showed that if equal decay rates are considered the investigation of the electromagnetically induced transparency phenomenon can be done only in the strong coupling regime. Our study reveals that the quantum system is in a Λ configuration in the absence of external fields but, in the presence of the magnetic field, it may present simultaneously many configurations (of Λ, Ξ and V type) that allow the occurrence of transparency, separated by very narrow regions of magnetic fields where no configuration is active. The magnetic field determines almost periodically the switch between configurations. We demonstrated that in V (Ξ) configurations the ATS requires the greatest (lowest) intensity of the control laser and of the energy of the probe laser.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.G. Beausoleil, W.J. Munro, D.A. Rodrigues, T.P. Spiller, J. Mod. Optics 51, 2441 (2004)

    Article  ADS  Google Scholar 

  2. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  Google Scholar 

  3. A.I. Lvovsky, B.C. Sanders, W. Tittel, Nat. Photonics 3, 706 (2009)

    Article  ADS  Google Scholar 

  4. A.H. Savafi-Naeini, T.P. Mayer Alegre, J. Chan, M. Eichfield, M. Winger, Q. Lin, J. T. Hill, D.D. Chang, O. Painter, Nature 472, 62 (2011)

    ADS  Google Scholar 

  5. P.M. Anisimov, J.P. Dowling, B.C. Sanders, Phys. Rev. Lett. 107, 163604 (2011)

    Article  ADS  Google Scholar 

  6. J. Clarke, H. Chen, W.A. van Wijngaarden, Appl. Optics 40, 2047 (2001)

    Article  ADS  Google Scholar 

  7. K.J. Boller, A. Imamoglu, S. Harris, Phys. Rev. Lett. 66, 2593 (1991)

    Article  ADS  Google Scholar 

  8. M. Xiao, Y.Q. Li, S.Z. Jin, J. Gea-Banacloche, Phys. Rev. Lett. 74, 666 (1995)

    Article  ADS  Google Scholar 

  9. L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Nature 397, 594 (1999)

    Article  ADS  Google Scholar 

  10. J.E. Field, K.H. Hahn, S.E. Harris, Phys. Rev. Lett. 67, 3062 (1991)

    Article  ADS  Google Scholar 

  11. G.R. Welch, G.G. Padmabandu, E.S. Fry, M.D. Lukin, D.E. Nikonov, F. Sander, M.O. Scully, A. Weis, F.K. Tittel, Found. Phys. 28, 621 (1998)

    Article  Google Scholar 

  12. J.M. Zhao, W.B. Yin, L.R. Wang, L.T. Xiao, S.T. Jia, Chin. Phys. 11, 241 (2002)

    Article  ADS  Google Scholar 

  13. A. Lazoudis, T. Kirova, E.H. Ahmed, P. Qi, J. Huennekens, A.M. Lyyra, Phys. Rev. A 83, 063419 (2011)

    Article  ADS  Google Scholar 

  14. X. Lu, X. Miao, J. Bai, L. Pei, M. Wang, Y. Gao, L.-A. Wu, P. Fu, R. Wang, Z. Zuo, J. Phys. B: At. Mol. Opt. Phys. 48, 055003 (2015)

    Article  ADS  Google Scholar 

  15. C. Zhu, C. Tan, G. Huang, Phys. Rev. A 87, 043813 (2013)

    Article  ADS  Google Scholar 

  16. P. Anisimov, O. Kocharovskaya, J. Mod. Opt. 55, 3159 (2008)

    Article  ADS  Google Scholar 

  17. T.Y. Abi-Salloum, Phys. Rev. A 81, 053836 (2010)

    Article  ADS  Google Scholar 

  18. L. Giner, L. Veissier, B. Sparkes, A.S. Sheremet, A. Nicolas, O.S. Mishina, M. Scherman, S. Burks, I. Shomroni, D.V. Kupriyanov, P.K. Lam, E. Giacobino, J. Laurat, Phys. Rev. A 87, 013823 (2013)

    Article  ADS  Google Scholar 

  19. C. Tan, G. Huang, J. Opt. Soc. Am. B 31, 704 (2014)

    Article  ADS  Google Scholar 

  20. L. Hao, Y. Jiao, Y. Xue, X. Han, S. Bai, J. Zhao, G. Raithel, New. J. Phys. 20, 073024 (2018)

    Article  ADS  Google Scholar 

  21. H. Lee, Y. Rostovtsev, M.O. Scully, Phys. Rev. A 62, 063804 (2000)

    Article  ADS  Google Scholar 

  22. G.B. Serapiglia, E. Paspalakis, C. Sirtori, K.L. Vodopyanov, C.C. Phillips, Phys. Rev. Lett. 84, 1019 (2000)

    Article  ADS  Google Scholar 

  23. S. Hanna, B. Eichenberg, D.A. Firsov, L.E. Vorobjev, V.M. Ustinov, Physica E 75, 93 (2016)

    Article  ADS  Google Scholar 

  24. M. Phillips, H. Wang, Opt. Lett. 28, 831 (2003)

    Article  ADS  Google Scholar 

  25. S.-M. Ma, H. Xu, B.S. Ham, Opt. Express 17, 14902 (2009)

    Article  ADS  Google Scholar 

  26. M.C. Phillips, H. Wang, I. Rumyantsev, N.H. Kwong, R. Takayama, R. Binder, Phys. Rev. Lett. 91, 183602 (2003)

    Article  ADS  Google Scholar 

  27. H. Kang, J.S. Kim, S.I. Hwang, Y.H. Park, D. Ko, J. Lee, Opt. Express 16, 15728 (2008)

    Article  ADS  Google Scholar 

  28. H. Gotoh, H. Komada, T. Saitoh, H. Ando, J. Temmyo, Phys. Rev. B 71, 195334 (2005)

    Article  ADS  Google Scholar 

  29. S. Marcinkevicius, A. Gushterov, J.P. Reithmaier, Appl. Phys. Lett. 92, 041113 (2008)

    Article  ADS  Google Scholar 

  30. D. Bejan, C. Trusca, Rom. Rep. Phys. 70, 412 (2018)

    Google Scholar 

  31. J. Jayarubi, A.J. Peter, C.W. Lee, Eur. Phys. J. D 73, 63 (2019)

    Article  ADS  Google Scholar 

  32. Z. Raki, H.R. Askari, Superlattices Microstruct. 65, 161 (2014)

    Article  ADS  Google Scholar 

  33. H.R. Askari, Z. Raki, Superlattices Microstruct. 71, 82 (2014)

    Article  ADS  Google Scholar 

  34. M. Mirzaei, H.R. Askari, Z. Raki, Superlattices Microstruct. 74, 61 (2014)

    Article  ADS  Google Scholar 

  35. V. Pavlovic, L. Stevanovic, Superlattices Microstruct. 92, 10 (2016)

    Article  ADS  Google Scholar 

  36. G. Rezaei, S. Shojaeian Kish, B. Vaseghi, S.F. Taghizadeh, Physica E 62, 104 (2014)

    Article  ADS  Google Scholar 

  37. D. Bejan, Opt. Mater. 67, 145 (2017)

    Article  ADS  Google Scholar 

  38. D. Bejan, Eur. Phys. J. B 90, 54 (2017)

    Article  ADS  Google Scholar 

  39. E.C. Niculescu, C. Stan, G. Tiriba, C. Trusca, Eur. J. Phys. B 90, 100 (2017)

    Article  ADS  Google Scholar 

  40. D. Bejan, C. Stan, E.C. Niculescu, Opt. Mater. 75, 827 (2018)

    Article  ADS  Google Scholar 

  41. A. Zamani, F. Setareh, T. Azargoshasb, E. Niknam, Superlattices Microstruct. 115, 40 (2018)

    Article  ADS  Google Scholar 

  42. D. Bejan, C. Stan, Philos. Mag. 99, 492 (2019)

    Article  ADS  Google Scholar 

  43. D. Bejan, C. Stan, E.C. Niculescu, Opt. Mater. 78, 207 (2018)

    Article  ADS  Google Scholar 

  44. D. Bejan, C. Stan, Eur. Phys. J. Plus 134, 127 (2019)

    Article  Google Scholar 

  45. D. Bejan, G. Raseev, Surf. Sci. 528, 163 (2003)

    Article  ADS  Google Scholar 

  46. G. Liu, K. Guo, C. Wang, Physica B 407, 2334 (2012)

    Article  ADS  Google Scholar 

  47. C.M. Duque, M.E. Mora-Ramos, C.A. Duque, Ann. Phys. 524, 327 (2012)

    Article  Google Scholar 

  48. C.M. Duque, A.L. Morales, M.E. Mora-Ramos, C.A. Duque, J. Lumin. 143, 81 (2013)

    Article  Google Scholar 

  49. R.E. Acosta, A.L. Morales, C.M. Duque, M.E. Mora-Ramos, C.A. Duque, Phys. Status Solidi B 253, 744 (2016)

    Article  ADS  Google Scholar 

  50. Y.D. Sibirmovskii, I.S. Vasil’evskii, A.N. Vinichenko, I.S. Eremin, D.M. Zhigunov, N.I. Kargin, O.S. Kolentsova, P.A. Martyuk, M.N. Strikhanov, Semiconductors 49, 638 (2015)

    Article  ADS  Google Scholar 

  51. R.D. Cook, D.S. Malkus, M.E. Plesha, Concepts and Applications of Finite Element Analysis, 3rd edn. (John Wiley & Sons, New York, 1989)

  52. R. Loudon, in The quantum theory of light, 2nd edn. (Clarendon Press, Oxford, 1988), Chaps. 1 and 2

  53. R.W. Boyd, in Nonlinear Optics, 3rd edn. (Academic Press, San Diego, 2008), Chap. 6

  54. L.J. Wang, A. Kuzmich, A. Dogariu, Nature 406, 277 (2000)

    Article  ADS  Google Scholar 

  55. T. Ihn, Semiconductor Nanostructures: Quantum States and Electronic Transport (Oxford University Press, New York, 2010)

  56. D. Bejan, E.C. Niculescu, Physica E 75, 149 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doina Bejan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bejan, D., Stan, C. & Toma, O. Magnetic field controlled induced transparency by Autler–Townes splitting in pseudo-elliptic quantum ring. Eur. Phys. J. B 92, 153 (2019). https://doi.org/10.1140/epjb/e2019-100223-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100223-x

Keywords

Navigation