Advertisement

Temperature- and diameter-dependent electrical conductivity of nitrogen doped ZnO nanowires

  • Shu-Long Li
  • Xiao-Xia Yu
  • Ya-Lin Li
  • Pei Gong
  • Ya-Hui Jia
  • Xiao-Yong FangEmail author
  • Mao-Sheng CaoEmail author
Regular Article
  • 18 Downloads

Abstract

A modified formula to calculate the axial conductivity of nanowires was proposed based on the one-dimensional quantum state density distribution and Boltzmann transport theory. Numerical simulations of the ZnO nanowires (ZnONWs) and Nitrogen-doped ZnO nanowires (N-ZnONWs) were implemented using data from the first principles calculation. The results indicate that ZnONWs are low-conductivity wide band-gap semiconductors owing to their low carrier concentrations at room temperature, with N-doping increasing the conductivity. The N-ZnONWs carrier concentrations increased with increasing temperature, and possessed significantly higher carrier concentrations than ZnONWs. With an increase in diameter, the ZnONWs conductivities increased, whereas the N-ZnONWs conductivities decreased.

Graphical abstract

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    S. Thomas, K. Matthias-Heinrich, T. Ma, Superlattices Microstruct. 34, 3 (2005) Google Scholar
  2. 2.
    Y.I. Alivova, D.C. Look, B.M. Ataev, M.V. Chukichev, V.V. Mamedov, V.I. Zinenko, Y.A. Agafonov, A.N. Pustovit, Solid-State Electron. 48, 2343 (2004) ADSCrossRefGoogle Scholar
  3. 3.
    H. Yang, H. Wang, G. Chen et al., Sol. Energy 80, 281 (2006) ADSCrossRefGoogle Scholar
  4. 4.
    H. Yang, H. Wang, G. Chen, G. Wu, J. Mater. Sci. 46, 1044 (2011) ADSCrossRefGoogle Scholar
  5. 5.
    Y. Hong, W. He, G. Chen, H. Yu, J Xi, Sol. Energy Mater. Sol. Cells 71, 407 (2002) CrossRefGoogle Scholar
  6. 6.
    F.Y. Meng, Y. Chiba, A. Yamada, M. Konagai, Sol. Energy Mater. Sol. Cells 91, 1887 (2007) CrossRefGoogle Scholar
  7. 7.
    C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, Appl. Phys. Lett. 81, 3648 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    A. Wei, X.W. Sun, C.X. Xu, Z.L. Dong, M.B. Yu, W. Huang, Appl. Phys. Lett. 88, 213102 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    G.H. Du, F. Xu, Z.Y. Yuan, G. Van Tendeloo, Appl. Phys. Lett. 88, 4386 (2006) Google Scholar
  10. 10.
    D. Zhao, Y. Liu, D. Shen, Y. Lu, L. Zhang, X. Fan, J. Appl. Phys. 94, 5605 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    D. Meng, G. Zhen, Z. Lianqun et al., Crystals 8, 223 (2018) CrossRefGoogle Scholar
  12. 12.
    A.K. Sood, Y.R. Puri, W. Mai et al., Proc. SPIE Int. Soc. Opt. Eng. 6959, 30 (2008) Google Scholar
  13. 13.
    T.M. Borseth, F. Tuomisto, J.S. Christensen, E.V. Monakhov, B.G. Svensson, A. Yu. Kuznetsov, Phys. Rev. B 77, 045204 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    T. Yen, M. Dinezza, A. Haungs, S.J. Kim, W.A. Anderson, A.N. Cartwright, J. Vacuum Sci. Technol. B 27, 1948 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    J. Lv, C. Li, Appl. Phys. Lett. 103, 015501 (2013) Google Scholar
  16. 16.
    E.C. Lee, Y.S. Kim, Y.G. Jin, K.J. Chang, Physica B 308, 915 (2001) ADSGoogle Scholar
  17. 17.
    Q. Hou, Z. Xu, X. Jia et al., J. Appl. Phys. 123, 055106 (2018) ADSCrossRefGoogle Scholar
  18. 18.
    Y.Q. Liao, H.K. Yuan, A.L. Kuang et al., Appl. Mech. Mater. 130, 1438 (2011) Google Scholar
  19. 19.
    X. Zhang, A. Schleife, Phys. Rev. B 97, 125201 (2018) ADSCrossRefGoogle Scholar
  20. 20.
    Z. Zhou, T. Komori, M. Yoshino, Y. Takeda, Appl. Phys. Lett. 86, 1979 (2005) Google Scholar
  21. 21.
    A. Boukhachem, B. Ouni, M. Karyaoui, A. Madani, R. Chtourou, M. Amlouk, Mater. Sci. Semicond. Process. 15, 292 (2012) CrossRefGoogle Scholar
  22. 22.
    S. Ghosh, Q. Wang, G.P. Das, P. Jena, Phys. Rev. B 81, 2020 (2010) Google Scholar
  23. 23.
    Q. Wang, Q. Sun, P. Jena, New J. Phys. 11, 063035 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    W. Xu, Z. Ye, T. Zhou, B. Zhao, L. Zhu, J. Huang, J. Cryst. Growth 265, 136 (2004) ADSGoogle Scholar
  25. 25.
    S.B. Zhang, S.H. Wei, A. Zunger, Phys. Rev. B 63, 250 (2001) Google Scholar
  26. 26.
    M. Sahal, M. Mollar, B. Marí, in Renewable and Sustainable Energy Conference, Marrakech, Morocco, 14–17 November 2016 (IEEE Press, 2016), p. 11 Google Scholar
  27. 27.
    F. Zhang, Y. Ren, X. Wang, H. Fang, L.I. Fansheng, J. Zhang, J. Light Scatter. 30, 62 (2018) Google Scholar
  28. 28.
    S. Wang, Solid State Electronics (McGraw-Hill, New York, 1966) Google Scholar
  29. 29.
    X.Y. Fang, X.X. Yu, Y.J. Li, H.M. Zheng, H.B. Jin, L. Wang, M.S. Cao, Phys. Lett. A 379, 2251 (2015) ADSGoogle Scholar
  30. 30.
    P. Gong, Y.J. Li, Y.H. Jia, Y.L. Li, S.L. Li, X.Y. Fang, M.S. Cao, Phys. Lett. A 382, 2488 (2018) ADSCrossRefGoogle Scholar
  31. 31.
    Y.J. Li, S.L. Li, P. Gong, Y.L. Li, X.Y. Fang, Y.H. Jia, M.S. Cao, Physica E 104, 253 (2018) ADSCrossRefGoogle Scholar
  32. 32.
    A.A. Peyghan, M.T. Baei, S. Hashemian, J. Clust. Sci. 24, 347 (2013) Google Scholar
  33. 33.
    M.T. Baei, A.A. Peyghan, Z. Bagheri, M.B. Tabar, Phys. Lett. A 377, 111 (2012) ADSCrossRefGoogle Scholar
  34. 34.
    Y.J. Li, S.L. Li, P. Gong, Y.L. Li, M.S. Cao, X.Y. Fang, Physica E 98, 196 (2018) ADSGoogle Scholar
  35. 35.
    A.I. Ekimov, A.L. Efros, A.A. Onushchenko, Solid State Commun. 56, 924 (1985) ADSCrossRefGoogle Scholar
  36. 36.
    X. Li, J. Qi, Q. Zhang et al., J. Appl. Phys. 112, 6291 (2012) Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan UniversityQinhuangdaoP.R. China
  2. 2.School of Aerospace Engineering, Beijing Institute of TechnologyBeijingP.R. China
  3. 3.School of Materials Science and Engineering, Beijing Institute of TechnologyBeijingP.R. China

Personalised recommendations