Skip to main content
Log in

Understanding one-dimensional topological Kondo insulator: poor man’s non-uniform antiferromagnetic mean-field theory versus quantum Monte Carlo simulation

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Topological Kondo insulator (TKI) is an essential example of interacting topological insulator, where electron’s correlation effect plays a key role. However, most of our understanding on this timely issue comes from numerical simulations, (particularly in one-spatial dimension) which exactly includes correlation effect but is black box for extracting underlying physics. In this work, we use a non-uniform antiferromagnetic mean-field (nAFM) theory to understand the underlying physics in a TKI model, the 1D p-wave periodic Anderson model (p-PAM). Comparing with numerically exact quantum Monte Carlo simulation, we find that nAFM theory is an excellent approximation for ground-state properties when onsite Hubbard interaction is weak. This emphasizes the dominating antiferromagnetic correlation in this system and local antiferromagnetic picture captures the qualitative nature of interacting many-body ground state. Adding extra conduction electron band to p-PAM leads to a quantum phase transition from Haldane phase into topological trivial phase. We believe these results may be helpful for understanding novel physics in interacting TKI materials such as SmB6 and other related compounds.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  2. X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  3. N.P. Armitage, E.J. Mele, A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018)

    Article  ADS  Google Scholar 

  4. A. Bansil, H. Lin, T. Das, Rev. Mod. Phys. 88, 021004 (2016)

    Article  ADS  Google Scholar 

  5. M. Dzero, J. Xia, V. Galitski, P. Coleman, Annu. Rev. Condens. Matter Phys. 7, 249 (2016)

    Article  ADS  Google Scholar 

  6. M. Dzero, K. Sun, V. Galitski, P. Coleman, Phys. Rev. Lett. 104, 106408 (2010)

    Article  ADS  Google Scholar 

  7. G. Li et al., Science 346, 1208 (2014)

    Article  ADS  Google Scholar 

  8. B.S. Tan et al., Science 349, 287 (2015)

    Article  ADS  Google Scholar 

  9. V. Alexandrov, P. Coleman, O. Erten, Phys. Rev. Lett. 114, 177202 (2015)

    Article  ADS  Google Scholar 

  10. O. Erten, P. Ghaemi, P. Coleman, Phys. Rev. Lett. 116, 046403 (2016)

    Article  ADS  Google Scholar 

  11. G. Baskaran, https://arXiv:1507.03477

  12. O. Erten, P.-Y. Chang, P. Coleman, A.M. Tsvelik, Phys. Rev. Lett. 119, 057603 (2017)

    Article  ADS  Google Scholar 

  13. A. Thomson, S. Sachdev, Phys. Rev. B 93, 125103 (2016)

    Article  ADS  Google Scholar 

  14. D. Chowdhury, I. Sodemann, T. Senthil, Nat. Commun. 9, 1766 (2018)

    Article  ADS  Google Scholar 

  15. I. Sodemann, D. Chowdhury, T. Senthil, Phys. Rev. B 97, 045152 (2018)

    Article  ADS  Google Scholar 

  16. Y. Zhong, Y. Liu, H.-G. Luo, Eur. Phys. J. B 90, 147 (2017)

    Article  ADS  Google Scholar 

  17. F.T. Lisandrini, A.M. Lobos, A.O. Dobry, C.J. Gazza, Phys. Rev. B 96, 075124 (2017)

    Article  ADS  Google Scholar 

  18. Y. Zhong, Y. Liu, Q. Wang, K. Liu, H.-F. Song, H.-G. Luo, Front. Phys. 14, 23602 (2019)

    Article  Google Scholar 

  19. I. Hagymási, C. Hubig, U. Schollwöck, Phys. Rev. B 99, 075145 (2019)

    Article  ADS  Google Scholar 

  20. A. Mezio, A.M. Lobos, A.O. Dobry, C.J. Gazza, Phys. Rev. B 92, 205128 (2015)

    Article  ADS  Google Scholar 

  21. I. Hagymasi, O. Legeza, Phys. Rev. B 93, 165104 (2016)

    Article  ADS  Google Scholar 

  22. A. Rüegg, S.D. Huber, M. Sigrist, Phys. Rev. B 81, 155118 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y. Understanding one-dimensional topological Kondo insulator: poor man’s non-uniform antiferromagnetic mean-field theory versus quantum Monte Carlo simulation. Eur. Phys. J. B 92, 178 (2019). https://doi.org/10.1140/epjb/e2019-100206-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100206-5

Keywords

Navigation