Skip to main content
Log in

Management of modulated wave solitons in a two-dimensional nonlinear transmission network

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Based on a modified one-dimensional Noguchi electrical transmission network containing a linear dispersive element CS with a voltage source and a one-dimensional series capacitor transmission network, we build a two-dimensional nonlinear discrete electrical network which allow the wave propagation in both the longitudinal and the transverse direction. These transmission lines are coupled to one another in the transverse (longitudinal) direction by a linear capacitor C2 (a linear inductor L1 in parallel with the linear capacitance Cs). The linear dispersion relation of the network system is derived and the effects of the transverse coupling element C2 on the linear waves are established. Using the continuum limit approximation and assuming that the perturbation voltage is small enough compared with the equilibrium value, we show that the dynamics of small-amplitude pulses in the network can be governed by a two-dimensional modified Zakharov–Kuznetsov (ZK) equation with a voltage source term. Analyzing the wave propagation in a reduced direction, we show that a best choice of the coupling capacitance C2 and the linear dispersive element CS can lead to the propagation at the same frequency of two distinct waves propagating in different reduced propagation directions. The transverse stability of plane solitary waves is investigated and the effects of the dispersive element CS on the transverse instability are presented. Through the analytical exact bright solitary wave solution of the derived ZK equation, we investigate analytically the effects of the linear dispersive element CS, the effects of the management parameter, and the effects of the reduce propagation direction on the characteristic parameters (amplitude, width, and velocity) of bright solitary waves propagating through our network system. We find that the management parameter of the ZK equation can be used to manipulate the motion of pulse voltages through the network system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.C. Scott,Nonlinear Science: Emergency & Dynamics of Coherent Structures (Oxford University Press, New York, 1999)

  2. M. Remoissenet,Waves Called Solitons, 3rd edn. (Springer, Berlin, 1999)

  3. K. Lonngren, inSolitons in Action, edited by K. Lonngren, A. Scott (Academic Press, New York, 1978)

  4. R. Hirota, K. Suzuki, Proc. IEEE 61, 1483 (1973)

    Article  Google Scholar 

  5. R. Hirota, K. Suzuki, J. Phys. Soc. Jpn. 28, 1366 (1970)

    Article  ADS  Google Scholar 

  6. A.C. Scott,Active and Nonlinear Wave Propagation in Electronics (Wiley-, New York 1970)

  7. Yu. A. Stepanyants, Wave Motion 3, 335 (1981)

    Article  Google Scholar 

  8. A. Noguchi, Electron. Commun. Jpn. A 57, 9 (1974)

    ADS  Google Scholar 

  9. T. Yoshinaga, T. Kakutani, J. Phys. Soc. Jpn. 53, 85 (1984)

    Article  ADS  Google Scholar 

  10. Y.H. Ichikawa, T. Mitsuhaski, K. Konno, J. Phys. Soc. Jpn. 41, 1382 (1976)

    Article  ADS  Google Scholar 

  11. W.S. Duan, X.R. Hong, Y.R. Shi, K.P. Lv, Chin. Phys. Lett. 19, 1231 (2002)

    Article  ADS  Google Scholar 

  12. E. Kengne, S.T. Chui, W.M. Liu, Phys. Rev. E 74, 036614 (2006)

    Article  ADS  Google Scholar 

  13. E. Kengne, V. Bozic, M. Viana, R. Vaillancourt, Phys. Rev. E 78, 026603 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  14. W.S. Duan, Europhys. Lett. 66, 192 (2004)

    Article  ADS  Google Scholar 

  15. E. Kengne, A. Lakhssassi, Chaos Solitons Fractals 73, 191 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. F.B. Pelap, M.M. Faye, Nonlinear Oscil. 8, 513 (2005)

    Article  MathSciNet  Google Scholar 

  17. F.B. Pelap, J.H. Kamga, S.B. Yamgoue, S.M. Ngounou, J.E. Ndecfo, Phys. Rev. E 91, 022925 (2015)

    Article  ADS  Google Scholar 

  18. E. Kengne, A. Lakhssassi, Eur. Phys. J. B 87, 237 (2014)

    Article  ADS  Google Scholar 

  19. E. Kengne, A. Lakhssassi, W.M. Liu, Phys. Rev. E 9, 022221 (2017)

    Article  ADS  Google Scholar 

  20. E. Kengne, W.M. Liu, Phys. Rev. E 97, 052205 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. E. Kengne, W.M. Liu, Phys. Rev. E 73, 026603 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  22. E. Kengne, A. Lakhssassi, W.M. Liu, Phys. Rev. E 91, 062915 (2015)

    Article  ADS  Google Scholar 

  23. P. Marquié, J.M. Bilbault, M. Remoissenet, Phys. Rev. E 49, 828 (1994)

    Article  ADS  Google Scholar 

  24. J.K. Duan, Y.L. Bai, Indian J. Phys. 92, 369 (2018)

    Article  ADS  Google Scholar 

  25. W.-S. Duan, Europhys. Lett. 66, 192 (2004)

    Article  ADS  Google Scholar 

  26. J.E. Dolan, H.R. Bolton, IEE Proc. Sci. Meas. Technol. 14, 231 (2000)

    Google Scholar 

  27. M.S. Nikoo, S.M.-A. Hashemi, IEEE Trans. Microw. Theory Tech. 65, 4073 (2017)

    Article  ADS  Google Scholar 

  28. M. Wadati, J. Phys. Soc. Jpn. 38, 673 (1975)

    Article  ADS  Google Scholar 

  29. G.R. Deffo, S.B. Yamgoué, F.B Pelap, Phys. Rev. E 98, 062201 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  30. M.H.M Moussa, Int. J. Eng. Sci. 39, 1565 (2001)

    Article  Google Scholar 

  31. C.Z. Qu, Int. J. Theor. Phys. 34, 99 (1995)

    Article  Google Scholar 

  32. K. Chandrasekharan, inElliptic Functions (Springer, Berlin, 1985), p. 44

  33. M. Abramowitz, J. Stegun,Handbook of Mathematical Functions (Dover, New York, 1968)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Kengne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kengne, E., Liu, WM. Management of modulated wave solitons in a two-dimensional nonlinear transmission network. Eur. Phys. J. B 92, 235 (2019). https://doi.org/10.1140/epjb/e2019-100204-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100204-7

Keywords

Navigation