Skip to main content

Asymmetric energy transfers in driven nonequilibrium systems and arrow of time

Abstract

Fundamental interactions are either fully or nearly symmetric under time reversal. But macroscopic phenomena may have a definite arrow of time. From the perspectives of statistical physics, the direction of time is towards increasing entropy. In this paper, we provide another perspective on the arrow of time. In driven-dissipative nonequilibrium systems forced at large scale, the energy typically flows from large scales to dissipative scales. This generic and multiscale process breaks time reversal symmetry and principle of detailed balance, thus can yield an arrow of time. In this paper we propose that conversion of large-scale coherence to small-scales decoherence could be treated as a dissipation mechanism for generic physical systems. We illustrate the above processes using turbulence as an example. In the paper we also describe exceptions to the above scenario, mainly systems exhibiting no energy cascade or inverse energy cascade.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R.P. Feynman,The Character of Physical Law (Modern Library, New York, 1994)

  2. 2.

    J.L. Lebowitz, Rev. Mod. Phys. 71, S346 (1999)

    Article  Google Scholar 

  3. 3.

    S. Carroll,From Eternity to Here (Oneworld Publications, 2011)

  4. 4.

    L.E. Reichl, inA Modern Course in Statistical Physics, 3rd edn. (Wiley, 2009)

  5. 5.

    Pathria, inStatistical Mechanics, 3rd edn. (Elsevier, Oxford, 2011)

  6. 6.

    F. Schwabl,Statistical Mechanics (Springer-Verlag, 2006)

  7. 7.

    L. Boltzmann, inThe kinetic theory of gases: an anthology of classic papers with historical commentary (World Scientific, 2003), pp. 262–349

  8. 8.

    R.L. Liboff,Kinetic Theory (Wiley, 1998)

  9. 9.

    S.H. Strogatz,Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 2nd edn. (Perseus Books, Reading, MA, 2014)

  10. 10.

    J.A. Wheeler, W.H. Zurek,Quantum Theory and Measurement (Princeton University Press, 2014)

  11. 11.

    M.V. Berry, inQuantum Mechanics: scientific perspectives on divine action, edited by R.J. Russel, P. Clayton, K. Wegter-McNelly, J. Polkinghorne (Vatican Observatory CTNS publications, 2001), p. 41

  12. 12.

    U. Frisch,Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995)

  13. 13.

    A.N. Kolmogorov, Dokl. Acad. Nauk SSSR 32, 16 (1941)

    ADS  Google Scholar 

  14. 14.

    A.N. Kolmogorov, Dokl. Acad. Nauk SSSR 30, 301 (1941)

    ADS  Google Scholar 

  15. 15.

    M. Lesieur,Turbulence in Fluids (Springer-Verlag, Dordrecht, 2008)

  16. 16.

    S.B. Pope,Turbulent Flows (Cambridge University Press, Cambridge, 2000)

  17. 17.

    M.K. Verma, inIntroduction to Mechanics, 2nd edn. (Universities Press, Hyderabad, 2016)

  18. 18.

    M. Claassen, H.C. Jiang, B. Moritz, T.P. Devereaux, Nat. Commun. 18, 1192 (2017)

    ADS  Article  Google Scholar 

  19. 19.

    A.S. Schwanecke, A. Krasavin, D.M. Bagnall, A. Potts, A.V. Zayats, N.I. Zheludev, Phys. Rev. Lett. 91, 247404 (2003)

    ADS  Article  Google Scholar 

  20. 20.

    A. Papakostas, A. Potts, D.M. Bagnall, S.L. Prosvirnin, H.J. Coles, N.I. Zheludev, Phys. Rev. Lett. 90, 107404 (2003)

    ADS  Article  Google Scholar 

  21. 21.

    P.A. Davidson,Turbulence: An Introduction for Scientists and Engineers (Oxford University Press, Oxford, 2004)

  22. 22.

    H. Xu, A. Pumir, G. Falkovich, E. Bodenschatz, M. Shats, H. Xia, N. Francois, G. Boffetta, PNAS 111, 7558 (2014)

    ADS  Article  Google Scholar 

  23. 23.

    J. Jucha, H. Xu, A. Pumir, Phys. Rev. Lett. 113, 054501 (2014)

    ADS  Article  Google Scholar 

  24. 24.

    M. Cencini, L. Biferale, G. Boffetta, M. De Pietro, Phys. Rev. Fluids 2, 104604 (2017)

    ADS  Article  Google Scholar 

  25. 25.

    E. Piretto, S. Musacchio, F. de Lillo, G. Boffetta, Phys. Rev. E 94, 053116 (2016)

    ADS  Article  Google Scholar 

  26. 26.

    L.D. Landau, E.M. Lifshitz, inFluid Mechanics, Course of Theoretical Physics, 2nd edn. (Elsevier, Oxford, 1987)

  27. 27.

    G. Dar, M.K. Verma, V. Eswaran, Physica D 157, 207 (2001)

    ADS  Article  Google Scholar 

  28. 28.

    M.K. Verma, Phys. Rep. 401, 229 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  29. 29.

    Y.H. Pao, Phys. Fluids 11, 1371 (1968)

    ADS  Article  Google Scholar 

  30. 30.

    M.K. Verma, A. Kumar, P. Kumar, S. Barman, A.G. Chatterjee, R. Samtaney, R. Stepanov, Fluid Dyn. 53, 728 (2018)

    Article  Google Scholar 

  31. 31.

    M.K. Verma, A. Ayyer, O. Debliquy, S. Kumar, A.V. Chandra, Pramana - J. Phys. 65, 297 (2005)

    ADS  Article  Google Scholar 

  32. 32.

    M.K. Verma,Energy transfers in Fluid Flows: Multiscale and Spectral Perspectives (Cambridge University Press, Cambridge, 2019)

  33. 33.

    W.D. McComb,The physics of fluid turbulence (Clarendon Press, Oxford, 1990)

  34. 34.

    J.A. Domaradzki, R.S. Rogallo, Phys. Fluids A 2, 414 (1990)

    ADS  Article  Google Scholar 

  35. 35.

    Y. Zhou, Phys. Fluids A 5, 1092 (1993)

    ADS  Article  Google Scholar 

  36. 36.

    A.V. Sergio Chibbaro, Lamberto Rondoni,Reductionism, Emergence and Levels of Reality: The Importance of Being Borderline (Springer, 2014)

  37. 37.

    D.L. Turcotte,Fractals and Chaos in Geology and Geophysics (Cambridge University Press, 1997)

  38. 38.

    F. Plunian, R. Stepanov, P. Frick, Phys. Rep. 523, 1 (2012)

    ADS  Article  Google Scholar 

  39. 39.

    P.K. Yeung, K.R. Sreenivasan, J. Fluid Mech. 716, R14 (2013)

    ADS  Article  Google Scholar 

  40. 40.

    B.I. Shraiman, E.D. Siggia, Nature 405, 639 (2000)

    ADS  Article  Google Scholar 

  41. 41.

    M.K. Verma,Physics of Buoyant Flows: From Instabilities to Turbulence (World Scientific, Singapore, 2018)

  42. 42.

    M.K. Verma, inNew Perspectives and Challenges in Econophysics and Sociophysics, edited by F. Abergel, B. Chakrabarti, A. Chakraborti, N. Deo, K. Sharma (Springer, 2019)

  43. 43.

    M.L. Goldstein, D.A. Roberts, Annu. Rev. Astron. Astrophys. 33, 283 (1995)

    ADS  Article  Google Scholar 

  44. 44.

    Y.B. Zeldovich, A.A. Ruzmaikin, D.D. Sokoloff,Magnetic fields in astrophysics (Gordon and Breach, 1983)

  45. 45.

    J.C. McWilliams,Fundamentals of geophysical fluid dynamics (Cambridge University Press, Cambridge, 2006)

  46. 46.

    B.G. Elmegreen, J. Scalo, Annu. Rev. Astron. Astrophys. 42, 211 (2004)

    ADS  Article  Google Scholar 

  47. 47.

    M.K. Verma, J. Geophys. Res. Space Phys. 101, 27543 (1996)

    ADS  Article  Google Scholar 

  48. 48.

    G. Boffetta, R.E. Ecke, Annu. Rev. Fluid Mech. 44, 427 (2012)

    ADS  Article  Google Scholar 

  49. 49.

    M.K. Sharma, A. Kumar, M.K. Verma, S. Chakraborty, Phys. Fluids 30, 045103 (2018)

    ADS  Article  Google Scholar 

  50. 50.

    S.K. Nemirovskii, Phys. Rep. 524, 85 (2012)

    ADS  Article  Google Scholar 

  51. 51.

    D.I. Bradley, D.O. Clubb, S.N. Fisher, A.M. Guénault, R.P. Haley, C.J. Matthews, G.R. Pickett, V. Tsepelin, K. Zaki, Phys. Rev. Lett. 96, 035301 (2006)

    ADS  Article  Google Scholar 

  52. 52.

    E. Fonda, K.R. Sreenivasan, D.P. Lathrop, PNAS 116, 1924 (2019)

    ADS  Article  Google Scholar 

  53. 53.

    N. Yokoi, A. Brandenburg, Phys. Rev. E 93, 033125 (2016)

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mahendra K. Verma.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verma, M.K. Asymmetric energy transfers in driven nonequilibrium systems and arrow of time. Eur. Phys. J. B 92, 190 (2019). https://doi.org/10.1140/epjb/e2019-100171-5

Download citation

Keywords

  • Statistical and Nonlinear Physics