Abstract
Fundamental interactions are either fully or nearly symmetric under time reversal. But macroscopic phenomena may have a definite arrow of time. From the perspectives of statistical physics, the direction of time is towards increasing entropy. In this paper, we provide another perspective on the arrow of time. In driven-dissipative nonequilibrium systems forced at large scale, the energy typically flows from large scales to dissipative scales. This generic and multiscale process breaks time reversal symmetry and principle of detailed balance, thus can yield an arrow of time. In this paper we propose that conversion of large-scale coherence to small-scales decoherence could be treated as a dissipation mechanism for generic physical systems. We illustrate the above processes using turbulence as an example. In the paper we also describe exceptions to the above scenario, mainly systems exhibiting no energy cascade or inverse energy cascade.
Graphical abstract
Similar content being viewed by others
References
R.P. Feynman,The Character of Physical Law (Modern Library, New York, 1994)
J.L. Lebowitz, Rev. Mod. Phys. 71, S346 (1999)
S. Carroll,From Eternity to Here (Oneworld Publications, 2011)
L.E. Reichl, inA Modern Course in Statistical Physics, 3rd edn. (Wiley, 2009)
Pathria, inStatistical Mechanics, 3rd edn. (Elsevier, Oxford, 2011)
F. Schwabl,Statistical Mechanics (Springer-Verlag, 2006)
L. Boltzmann, inThe kinetic theory of gases: an anthology of classic papers with historical commentary (World Scientific, 2003), pp. 262–349
R.L. Liboff,Kinetic Theory (Wiley, 1998)
S.H. Strogatz,Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, 2nd edn. (Perseus Books, Reading, MA, 2014)
J.A. Wheeler, W.H. Zurek,Quantum Theory and Measurement (Princeton University Press, 2014)
M.V. Berry, inQuantum Mechanics: scientific perspectives on divine action, edited by R.J. Russel, P. Clayton, K. Wegter-McNelly, J. Polkinghorne (Vatican Observatory CTNS publications, 2001), p. 41
U. Frisch,Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995)
A.N. Kolmogorov, Dokl. Acad. Nauk SSSR 32, 16 (1941)
A.N. Kolmogorov, Dokl. Acad. Nauk SSSR 30, 301 (1941)
M. Lesieur,Turbulence in Fluids (Springer-Verlag, Dordrecht, 2008)
S.B. Pope,Turbulent Flows (Cambridge University Press, Cambridge, 2000)
M.K. Verma, inIntroduction to Mechanics, 2nd edn. (Universities Press, Hyderabad, 2016)
M. Claassen, H.C. Jiang, B. Moritz, T.P. Devereaux, Nat. Commun. 18, 1192 (2017)
A.S. Schwanecke, A. Krasavin, D.M. Bagnall, A. Potts, A.V. Zayats, N.I. Zheludev, Phys. Rev. Lett. 91, 247404 (2003)
A. Papakostas, A. Potts, D.M. Bagnall, S.L. Prosvirnin, H.J. Coles, N.I. Zheludev, Phys. Rev. Lett. 90, 107404 (2003)
P.A. Davidson,Turbulence: An Introduction for Scientists and Engineers (Oxford University Press, Oxford, 2004)
H. Xu, A. Pumir, G. Falkovich, E. Bodenschatz, M. Shats, H. Xia, N. Francois, G. Boffetta, PNAS 111, 7558 (2014)
J. Jucha, H. Xu, A. Pumir, Phys. Rev. Lett. 113, 054501 (2014)
M. Cencini, L. Biferale, G. Boffetta, M. De Pietro, Phys. Rev. Fluids 2, 104604 (2017)
E. Piretto, S. Musacchio, F. de Lillo, G. Boffetta, Phys. Rev. E 94, 053116 (2016)
L.D. Landau, E.M. Lifshitz, inFluid Mechanics, Course of Theoretical Physics, 2nd edn. (Elsevier, Oxford, 1987)
G. Dar, M.K. Verma, V. Eswaran, Physica D 157, 207 (2001)
M.K. Verma, Phys. Rep. 401, 229 (2004)
Y.H. Pao, Phys. Fluids 11, 1371 (1968)
M.K. Verma, A. Kumar, P. Kumar, S. Barman, A.G. Chatterjee, R. Samtaney, R. Stepanov, Fluid Dyn. 53, 728 (2018)
M.K. Verma, A. Ayyer, O. Debliquy, S. Kumar, A.V. Chandra, Pramana - J. Phys. 65, 297 (2005)
M.K. Verma,Energy transfers in Fluid Flows: Multiscale and Spectral Perspectives (Cambridge University Press, Cambridge, 2019)
W.D. McComb,The physics of fluid turbulence (Clarendon Press, Oxford, 1990)
J.A. Domaradzki, R.S. Rogallo, Phys. Fluids A 2, 414 (1990)
Y. Zhou, Phys. Fluids A 5, 1092 (1993)
A.V. Sergio Chibbaro, Lamberto Rondoni,Reductionism, Emergence and Levels of Reality: The Importance of Being Borderline (Springer, 2014)
D.L. Turcotte,Fractals and Chaos in Geology and Geophysics (Cambridge University Press, 1997)
F. Plunian, R. Stepanov, P. Frick, Phys. Rep. 523, 1 (2012)
P.K. Yeung, K.R. Sreenivasan, J. Fluid Mech. 716, R14 (2013)
B.I. Shraiman, E.D. Siggia, Nature 405, 639 (2000)
M.K. Verma,Physics of Buoyant Flows: From Instabilities to Turbulence (World Scientific, Singapore, 2018)
M.K. Verma, inNew Perspectives and Challenges in Econophysics and Sociophysics, edited by F. Abergel, B. Chakrabarti, A. Chakraborti, N. Deo, K. Sharma (Springer, 2019)
M.L. Goldstein, D.A. Roberts, Annu. Rev. Astron. Astrophys. 33, 283 (1995)
Y.B. Zeldovich, A.A. Ruzmaikin, D.D. Sokoloff,Magnetic fields in astrophysics (Gordon and Breach, 1983)
J.C. McWilliams,Fundamentals of geophysical fluid dynamics (Cambridge University Press, Cambridge, 2006)
B.G. Elmegreen, J. Scalo, Annu. Rev. Astron. Astrophys. 42, 211 (2004)
M.K. Verma, J. Geophys. Res. Space Phys. 101, 27543 (1996)
G. Boffetta, R.E. Ecke, Annu. Rev. Fluid Mech. 44, 427 (2012)
M.K. Sharma, A. Kumar, M.K. Verma, S. Chakraborty, Phys. Fluids 30, 045103 (2018)
S.K. Nemirovskii, Phys. Rep. 524, 85 (2012)
D.I. Bradley, D.O. Clubb, S.N. Fisher, A.M. Guénault, R.P. Haley, C.J. Matthews, G.R. Pickett, V. Tsepelin, K. Zaki, Phys. Rev. Lett. 96, 035301 (2006)
E. Fonda, K.R. Sreenivasan, D.P. Lathrop, PNAS 116, 1924 (2019)
N. Yokoi, A. Brandenburg, Phys. Rev. E 93, 033125 (2016)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Verma, M.K. Asymmetric energy transfers in driven nonequilibrium systems and arrow of time. Eur. Phys. J. B 92, 190 (2019). https://doi.org/10.1140/epjb/e2019-100171-5
Received:
Revised:
Published:
DOI: https://doi.org/10.1140/epjb/e2019-100171-5