Skip to main content
Log in

Inducing amplitude death via pinning control

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The amplitude death (AD) phenomenon is an important dynamical behavior. Seeking the generation condition that induces AD has been an active and popular research field over the last two decades. In this paper, we report the emergence of AD in the identical coupled system with different network topologies through the pinning control. Using the negative self-feedback as the controllers to pin the network nodes, the critical condition that AD appears can be obtained theoretically. Moreover, the numerical scenarios, such as a single oscillator, two coupled oscillators, and coupled oscillators in regular and complex networks, have also been carried out to validate the effectiveness of the strategy, which coincides with the theoretical predictions. We show that, although the high degree nodes should be pinned preferentially to reach better efficiency for complex networks, the location (or significance) of nodes in network is more noteworthy than the degree of nodes for some regular networks. Our findings therefore provide a possibility to induce AD in coupled systems with different network topologies whose internal parameters and coupling schemes cannot be modified.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Pikovsky, M. Rosenblum, J. Kurths,Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2003)

  2. Y. Kuramoto,Chemical oscillations, waves, and turbulence (Springer, Berlin, 1984)

  3. S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C. Zhou, Phys. Rep. 366, 1 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469, 93 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  5. D.M. Abrams, S.H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004)

    Article  ADS  Google Scholar 

  6. D.M. Abrams, R. Mirollo, S.H. Strogatz, D.A. Wiley, Phys. Rev. Lett. 101, 084103 (2008)

    Article  ADS  Google Scholar 

  7. H. Daido, K. Nakanishi, Phys. Rev. Lett. 93, 104101 (2004)

    Article  ADS  Google Scholar 

  8. H. Daido, Phys. Rev. E 84, 016215 (2011)

    Article  ADS  Google Scholar 

  9. H. Daido, Europhys. Lett. 84, 10002 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  10. G. Saxena, A. Prasad, R. Ramaswamy, Phys. Rep. 521, 205 (2012)

    Article  ADS  Google Scholar 

  11. A. Koseska, E. Volkov, J. Kurths, Phys. Rev. Lett. 111, 024103 (2013)

    Article  ADS  Google Scholar 

  12. A. Koseska, E. Volkov, J. Kurths, Phys. Rep. 531, 173 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Prasad, Y.C. Lai, A. Gavrielides, V. Kovanis, Phys. Lett. A 318, 71 (2003)

    Article  ADS  Google Scholar 

  14. G.B. Ermentrout, N. Kopell, SIAM J. Appl. Math. 50, 125 (1990)

    Article  MathSciNet  Google Scholar 

  15. N. Suzuki, C. Furusawa, K. Kaneko, PloS ONE 6, e27232 (2011)

    Article  ADS  Google Scholar 

  16. E. Ullner, A. Zaikin, E.I. Volkov, J. García-Ojalvo, Phys. Rev. Lett. 99, 148103 (2007)

    Article  ADS  Google Scholar 

  17. D.G. Aronson, G.B. Ermentrout, N. Kopell, Physica D 41, 403 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  18. R.E. Mirollo, S.H. Strogatz, J. Stat. Phys. 60, 245 (1990)

    Article  ADS  Google Scholar 

  19. D.V. Ramana Reddy, A. Sen, G.L. Johnston, Phys. Rev. Lett. 80, 5109 (1998)

    Article  ADS  Google Scholar 

  20. W. Zou, X. Zheng, M. Zhan, Chaos 21, 023130 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  21. G. Saxena, A. Prasad, R. Ramaswamy, Phys. Rev. E 82, 017201 (2010)

    Article  ADS  Google Scholar 

  22. R. Karnatak, R. Ramaswamy, A. Prasad, Phys. Rev. E 76, 432 (2007)

    Article  Google Scholar 

  23. N. Zhao, Z. Sun, X. Yang, W. Xu, Europhys. Lett. 118, 30005 (2017)

    Article  ADS  Google Scholar 

  24. K. Konishi, Phys. Rev. E 68, 13 (2003)

    Article  Google Scholar 

  25. N. Zhao, Z. Sun, W. Xu, Eur. Phys. J. B 91, 20 (2018)

    Article  ADS  Google Scholar 

  26. S. Rakshit, B.K. Bera, S. Majhi, C. Hens, D. Ghosh, Sci. Rep. 7, 45909 (2017)

    Article  ADS  Google Scholar 

  27. Z. Sun, N. Zhao, X. Yang, W. Xu, Nonlinear Dyn. 92, 1185 (2018)

    Article  Google Scholar 

  28. R.O. Grigoriev, M.C. Cross, H.G. Schuster, Phys. Rev. Lett. 79, 2795 (1997)

    Article  ADS  Google Scholar 

  29. H. Su, X. Wang,Pinning control of complex networked systems: Synchronization, consensus and flocking of networked systems via pinning (Springer, Berlin, 2013)

  30. X. Wang, G. Chen, Physica A 310, 521 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  31. X. Li, X. Wang, G. Chen, IEEE Trans. Circuits Syst. I 51, 2074 (2004)

    Article  Google Scholar 

  32. Z. Rong, X. Li, W. Lu, inIEEE International Symposium on Circuits and Systems (IEEE, 2009), p. 1689

  33. X. Wang, H. Su, Annu. Rev. Control 38, 103 (2014)

    Article  Google Scholar 

  34. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  35. A.L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongkui Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, N., Sun, Z. & Xu, W. Inducing amplitude death via pinning control. Eur. Phys. J. B 92, 179 (2019). https://doi.org/10.1140/epjb/e2019-100108-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100108-0

Keywords

Navigation