Skip to main content

Advertisement

Log in

First-principles study of structural, mechanical, dynamical stability, electronic and optical properties of orthorhombic CH3NH3SnI3 under pressure

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The structural, mechanical, dynamical stability, electronic and optical properties of orthorhombic perovskite CH3NH3SnI3 have been investigated using density functional theory (DFT) and many body perturbation theory calculations under pressure. Elastic parameters such as bulk modulus B, Young’s modulus E, shear modulus G, Poisson’s ratio ν and anisotropy value A have been calculated by the Voigt-Reuss-Hill averaging scheme at 0.7 GPa. The calculations of phonon dispersions at zero pressure showed that the orthorhombic CH3NH3SnI3 perovskite is dynamically unstable, while at P = 0.7 GPa, the orthorhombic CH3NH3SnI3 perovskite is dynamically stable. Our calculations show that CH3NH3SnI3 is a direct band gap semiconductor with an approximate density functional fundamental gap in the range of 0.73 eV to 1.21 eV, depending on the exchange-correlation approximation used. Many body perturbation theory at the G0W0 level of approximation gives a fundamental band gap of 1.51 eV. In order to obtain optical spectra, we carried out Bethe-Salpeter equation calculations on top of a non-self-consistent G0W0 calculations. Our calculated optical band gap shows anisotropy with an absorption edge of 1.27 eV in the a direction, 1.36 eV in the b direction and 1.20 eV in the c direction. Optical absorption spectra calculated at the BSE level of approximation show that the structure is a good absorber of light in the IR region, confirming that CH3NH3SnI3 has potential as a low gap solar cell absorber.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Green, A. Ho Baillie, ACS Energy Lett. 2, 822 (2017)

    Google Scholar 

  2. N.G. Park, J. Phys. Chem. Lett. 4, 2423 (2013)

    Google Scholar 

  3. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

    Google Scholar 

  4. W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Science 348, 1234 (2015)

    ADS  Google Scholar 

  5. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Nano Lett. 13, 1764 (2013)

    ADS  Google Scholar 

  6. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Science 342, 341 (2013)

    ADS  Google Scholar 

  7. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 347, 967 (2015)

    ADS  Google Scholar 

  8. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev et al., Science 347, 519 (2015)

    ADS  Google Scholar 

  9. C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Inorg. Chem. 52, 9019 (2013)

    Google Scholar 

  10. Y.Y. Zhang, S. Chen, P. Xu, H. Xiang, X.G. Gong, A. Walsh, S.H. Wei, Chin. Phys. Lett. 35, 036104 (2018)

    ADS  Google Scholar 

  11. E. Mosconi, P. Umari, F. De Angelis, J. Mater. Chem. A 3, 9208 (2015)

    Google Scholar 

  12. M. Liu, M.B. Johnston, H.J. Nature 501, 395 (2013)

    ADS  Google Scholar 

  13. N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston et al., Energy Environ. Sci. 7, 3061 (2014)

    Google Scholar 

  14. J. Feng, B. Xiao, J. Phys. Chem. C 118, 19655 (2014)

    Google Scholar 

  15. E.S. Parrott, R.L. Milot, T. Stergiopoulos, H.J. Snaith, M.B. Johnston, L.M. Herz, J. Phys. Chem. Lett. 7, 1321 (2016)

    Google Scholar 

  16. Y. Takahashi, R. Obara, Z.Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, K. Terakura, Dalton Trans. 40, 5563 (2011)

    Google Scholar 

  17. F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Nat. Photonics 8, 489 (2014)

    ADS  Google Scholar 

  18. G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Energy Environ. Sci. 7, 982 (2014)

    Google Scholar 

  19. P. Umari, E. Mosconi, F. De Angelis, Sci. Rep. 4, 4467 (2014)

    ADS  Google Scholar 

  20. Y. Huang, L. Wang, Z. Ma, F. Wang, J. Phys. Chem. C 123, 739 (2018)

    Google Scholar 

  21. X. Lü, Y. Wang, C.C. Stoumpos, Q. Hu, X. Guo, H. Chen, L. Yang, J.S. Smith, W. Yang, Y. Zhao et al., Adv. Mater. 28, 8663 (2016)

    Google Scholar 

  22. W. Setyawan, S. Curtarolo, Comput. Mater. Sci. 49, 299 (2010)

    Google Scholar 

  23. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    ADS  Google Scholar 

  24. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

    ADS  Google Scholar 

  25. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

    ADS  Google Scholar 

  26. W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)

    ADS  Google Scholar 

  27. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    ADS  Google Scholar 

  28. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  29. A.D. Becke, E.R. Johnson, J. Chem. Phys. 124, 221101 (2006)

    ADS  Google Scholar 

  30. A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, G.E. Scuseria, J. Chem. Phys. 125, 224106 (2006)

    ADS  Google Scholar 

  31. T. Hammerschmidt, I. Abrikosov, D. Alfe, S. Fries, L. Höglund, M. Jacobs, J. Koßmann, X.G. Lu, G. Paul, Phys. Status Solidi B 251, 81 (2014)

    ADS  Google Scholar 

  32. G.D. Nguimdo, G.S. Manyali, M. Abdusalam, D.P. Joubert, Eur. Phys. J. B 89, 90 (2016)

    ADS  Google Scholar 

  33. G. Sin’Ko, N. Smirnov, J. Phys.: Condens. Matter 14, 6989 (2002)

    ADS  Google Scholar 

  34. O. Gomis, D. Santamaría Pérez, J. Ruiz Fuertes, J. Sans, R. Vilaplana, H. Ortiz, B. García-Domene, F. Manjón, D. Errandonea, P. Rodríguez-Hernández et al., J. Appl. Phys. 116, 133521 (2014)

    ADS  Google Scholar 

  35. F. Mouhat, F.X. Coudert, Phys. Rev. B 90, 224104 (2014)

    ADS  Google Scholar 

  36. W. Voigt, Lehrbuch der Kristallphysik: mit Ausschluss der Kristalloptik, inB.G. Teubners Sammlung von Lehrbüchern auf dem Gebiete der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen (J.W. Edwards, 1928)

  37. A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929)

    Google Scholar 

  38. R. Hill, Proc. Phys. Soc. A 65, 349 (1952)

    ADS  Google Scholar 

  39. D. Connétable, O. Thomas, Phys. Rev. B 79, 094101 (2009)

    ADS  Google Scholar 

  40. P. Ravindran, L. Fast, P. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, J. Appl. Phys. 84, 4891 (1998)

    ADS  Google Scholar 

  41. A. Togo, I. Tanaka, Scr. Mater. 108, 1 (2015)

    Google Scholar 

  42. L. Hedin, Phys. Rev. A 139, 796 (1965)

    ADS  Google Scholar 

  43. E.E. Salpeter, H.A. Bethe, Phys. Rev. 84, 1232 (1951)

    ADS  MathSciNet  Google Scholar 

  44. M.S.H. Suleiman, D.P. Joubert, Phys. Status Solidi B 252, 2840 (2015)

    ADS  Google Scholar 

  45. M. Fox, inOptical Properties of Solids (Oxford University Press, 2010), Vol. 3

  46. M.S. Suleiman, M.P. Molepo, D.P. Joubert, J. Alloys Compd. 753, 576 (2018)

    Google Scholar 

  47. J. Feng, APL Mater. 2, 081801 (2014)

    ADS  Google Scholar 

  48. M.S.H. Suleiman, A theoretical investigation of structural, electronic and optical properties of some group 10, 11 and 12 transition-metal nitrides, Ph.D. thesis, School of Physics, University of the Witwatersrand, 2013

  49. S. Pugh, The London, Edinburgh, and Dublin Philos. Mag. J. Sci. 45, 823 (1954)

    Google Scholar 

  50. J.P. Perdew, M. Levy, Phys. Rev. Lett. 51, 1884 (1983)

    ADS  Google Scholar 

  51. T. Zhao, W. Shi, J. Xi, D. Wang, Z. Shuai, Sci. Rep. 6, 19968 (2016)

    ADS  Google Scholar 

  52. W.J. Yin, T. Shi, Y. Yan, Appl. Phys. Lett. 104, 063903 (2014)

    ADS  Google Scholar 

  53. I.O.A. Ali, D.P. Joubert, M.S.H. Suleiman, Mater. Today: Proc. 5, 10570 (2018)

    Google Scholar 

  54. I.O.A. Ali, D.P. Joubert, M.S.H. Suleiman, Eur. Phys. J. B 91, 263 (2018)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Omer Abdallah Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, I.O.A., Joubert, D.P. & Suleiman, M.S.H. First-principles study of structural, mechanical, dynamical stability, electronic and optical properties of orthorhombic CH3NH3SnI3 under pressure. Eur. Phys. J. B 92, 202 (2019). https://doi.org/10.1140/epjb/e2019-100101-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100101-1

Keywords

Navigation