Skip to main content
Log in

Problem-solving using complex networks

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The present work addresses the issue of using complex networks as artificial intelligence mechanisms. More specifically, we consider the situation in which puzzles, represented as complex networks of varied types, are to be assembled by complex network processing engines of diverse structures. The puzzle pieces are initially distributed on a set of nodes chosen according to different criteria, including degree and eigenvector centrality. The pieces are then repeatedly copied to the neighboring nodes. The provision of buffering of different sizes are also investigated. Several interesting results are identified, including the fact that BA-based assembling engines tend to provide the fastest solutions. It is also found that the distribution of pieces according to the eigenvector centrality almost invariably leads to the best performance. Another result is that using the buffer sizes proportional to the degree of the respective nodes tend to improve the performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Davis, G. Marcus, Artif. Intell. 233, 60 (2016)

    Article  Google Scholar 

  2. M.A. Al-Nakhal, S.S. Abu Naser, Eur. Acad. Res. 4, 8770 (2017)

    Google Scholar 

  3. H.S. Fang, Y. Xu, W. Wang, X. Liu, S.C. Zhu, Learning pose grammar to encode human body configuration for 3D pose estimation, in Thirty-Second AAAI Conference on Artificial Intelligence, 2018

  4. J. Schmidhuber, Neural Netw. 61, 85 (2015)

    Article  Google Scholar 

  5. T.N. Sainath, B. Kingsbury, G. Saon, H. Soltau, A.R. Mohamed, G. Dahl, B. Ramabhadran, Neural Netw. 64, 39 (2015)

    Article  Google Scholar 

  6. A.L. Barabási et al., Network Science (Cambridge University Press, Cambridge, 2016)

  7. H.F. de Arruda, C.H. Comin, M. Miazaki, M.P. Viana, L. da Fontoura Costa, J. Neurosci. Methods 245, 1 (2015)

    Article  Google Scholar 

  8. H.F. de Arruda, F.N. Silva, L. da Fontoura Costa, D.R. Amancio, Inf. Sci. 421, 154 (2017)

    Article  Google Scholar 

  9. C.D. Brummitt, S. Chatterjee, P.S. Dey, D. Sivakoff et al., Ann. Appl. Probab. 25, 2013 (2015)

    Article  MathSciNet  Google Scholar 

  10. D. Stauffer, A. Aharony, L. da Fontoura Costa, J. Adler, Eur. Phys. J. B 32, 395 (2003)

    Article  ADS  Google Scholar 

  11. C.J. Stam, Nat. Rev. Neurosci. 15, 683 (2014)

    Article  Google Scholar 

  12. A.L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  13. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  14. M.E. Newman, Phys. Rev. Lett. 89, 208701 (2002)

    Article  ADS  Google Scholar 

  15. C.L. da Fontoura, O. Sporns, L. Antiqueira, N.M. das Graças Volpe, O.N. Oliveira Jr., Appl. Phys. Lett. 91, 054107 (2007)

    Article  ADS  Google Scholar 

  16. C.H. Comin, M.P. Viana, L. da Fontoura Costa, New J. Phys. 15, 013048 (2013)

    Article  ADS  Google Scholar 

  17. P.J. Souza, C.H. Comin, L. da Fontoura Costa, Europhys. Lett. 122, 26001 (2018)

    Article  ADS  Google Scholar 

  18. M. Mitchell, Artif. Intell. 170, 1194 (2006)

    Article  Google Scholar 

  19. T.C. Silva, L. Zhao, Inf. Sci. 294, 109 (2015)

    Article  Google Scholar 

  20. J.R.B. Junior, N.M. do Carmo, L. Zhao, Neural Netw. 85, 69 (2017)

    Article  Google Scholar 

  21. F. Breve, L. Zhao, Soft Comput. 17, 659 (2013)

    Article  Google Scholar 

  22. R.F. i Cancho, R.V. Solé, Optimization in complex networks, in Statistical Mechanics of Complex Networks (Springer, Berlin, 2003), pp. 114–126

  23. W. Du, M. Zhang, W. Ying, M. Perc, K. Tang, X. Cao, D. Wu, Appl. Math. Comput. 338, 33 (2018)

    MathSciNet  Google Scholar 

  24. R. Tinós, L. Zhao, F. Chicano, D. Whitley, IEEE Trans. Evol. Comput. 22, 748 (2018)

    Article  Google Scholar 

  25. M.G. Carneiro, R. Cheng, L. Zhao, Y. Jin, Neural Netw. 110, 243 (2019)

    Article  Google Scholar 

  26. O. Sporns, From complex networks to intelligent systems, in Creating Brain-Like Intelligence (Springer, Berlin, 2009), pp. 15–30

  27. E.B. Goldstein, J. Brockmole, Sensation and Perception (Cengage Learning, Belmont, 2016)

  28. P. Erdos, A. Rényi, Publ. Math. Inst. Hung. Acad. Sci. 5, 17 (1960)

    Google Scholar 

  29. E. Ravasz, A.L. Barabási, Phys. Rev. E 67, 026112 (2003)

    Article  ADS  Google Scholar 

  30. B.M. Waxman, IEEE J. Sel. Areas Commun. 6, 1617 (1988)

    Article  Google Scholar 

  31. L. da Fontoura Costa, F.A. Rodrigues, G. Travieso, P.R. Villas Boas, Adv. Phys. 56, 167 (2007)

    Article  ADS  Google Scholar 

  32. P. Bonacich, Am. J. Sociol. 92, 1170 (1987)

    Article  Google Scholar 

  33. M. Newman, Networks: An Introduction (Oxford University Press, Oxford, 2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique F. de Arruda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Arruda, H.F., Comin, C.H. & da F. Costa, L. Problem-solving using complex networks. Eur. Phys. J. B 92, 132 (2019). https://doi.org/10.1140/epjb/e2019-100100-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100100-8

Keywords

Navigation