Skip to main content

Advertisement

Log in

First-principles calculations of the structural, elastic, vibrational and electronic properties of YB6 compound under pressure

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, we report our theoretical prediction of a boron-rich binary compound, YB6, with Pm3̅m space group subjected to pressures from 0 to 50 GPa. Calculations of first principles are performed to investigate the elastic, vibrational and electronic structural properties using the Density Functional Theory (DFT) within the plane-wave pseudopotential method based on the generalized gradient approximation (GGA) proposed by Perdew-Wang (PW91). We discuss the structural stability based on elastic constants analysis (Cij) obtained with static finite strain technique. Bulk (BH), Shear (GH) and Young’s modulus (EH) as well as Poisson’s ratio (ν), were calculated with the Voigt-Reuss approximation derived from ideal polycrystalline aggregate. Other parameters such as Vickers Hardness (Hv), Pugh’s ratio GH/BH, the speed of sound (vm) and Debye temperature (θD) were given by elastic modules. We found that C11 and C12 elastic constants and elastic modulus monotonically increase while C44 decrease as a function of pressure; consequently, the structure is dynamically stable and ductile besides that hardness decreases under pressure. The phonon dispersion curves showed no imaginary phonon frequency in the entire Brillouin Zone (BZ) under pressure, showing stable Pm3̅m space group. Finally, the density of states (DOS) at the Fermi level decreases with increasing pressure, due to the decrease of the contribution of B 2-p states.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Xiao, Y. Su, H. Chen, M. Jiang, S. Liu, Z. Hu, R. Liu, P. Peng, Y. Mu, D. Zhu, AIP Adv. 1, 0022140 (2011)

    Article  Google Scholar 

  2. N. Sekido, T. Ohmura, J.H. Perepezco, Intermetallics 89, 86 (2017)

    Article  Google Scholar 

  3. L. Chao, L. Bao, W. Wei, O. Tegus, Z. Zhang, J. Alloys Compd. 672, 419 (2016)

    Article  Google Scholar 

  4. Y. Zhou, B. Liu, H. Xiang, Z. Feng, Z. Li, Mater. Res. Lett. 3, 210 (2015)

    Article  Google Scholar 

  5. Y. Zhou, H. Xiang, Z. Feng, Z. Li, J. Eur. Ceram. Soc. 35, 4437 (2015)

    Article  Google Scholar 

  6. G. Soto, M.G. Moreno-Armenta, A. Reyes-Serrato, Phys. Status Solidi B 246, 82 (2009)

    Article  ADS  Google Scholar 

  7. K. Flachbart, S. Gabani, J. Kacmarcik, T. Mori, S. Otani, V. Pavlik, in Proceedings of the 24th International Conference on Low Temperature Physics, Orlando, Florida, edited by Y. Takano, S.P. Hershfield, S.O. Hill, P.J. Hirschfeld, A.M. Goldman Melville (American Institute of Physics, NY, 2006), Vol. 850, p. 635

  8. Y.-K. Wei, J.-X. Yu, Z.-G. Li, Y. Cheng, G.-F. Ji, Physica B 406, 4476 (2011)

    Article  ADS  Google Scholar 

  9. X. Li, X. Huang, D. Duan, G. Wu, M. Liu, Q. Zhuang, S. Wei, Y. Huang, F. Li, Q. Zhou, B. Liu, T. Cui, RSC Adv. 6, 18077 (2006)

    Article  Google Scholar 

  10. R. Khasanov, P.S. Häfliger, N. Shitsevalova, A. Dukhnenko, R. Brütsch, H. Keller, Phys. Rev. Lett. 97, 157002 (2006)

    Article  ADS  Google Scholar 

  11. Y. Xu, L. Zhang, T. Cui, Y. Li, Y. Xie, W. Yu, Y. Ma, G. Zou, Phys. Rev. B 76, 214103 (2007)

    Article  ADS  Google Scholar 

  12. S. Gabáni, I. Takácová, G. Pristás, E. Gazo, K. Flachbart, T. Mori, D. Braithwaite, M. Mísek, K.V. Kamenev, M. Hanfland, P. Samuely, Phys. Rev. B 90, 045136 (2014)

    Article  ADS  Google Scholar 

  13. J.A. Alarco, M. Shahbazi, P.C. Talbot, I.D. Mackinnon, J. Raman Spectrosc. 49, 1 (2018)

    Article  Google Scholar 

  14. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, Z. Kristallogr. 220, 567 (2005)

    Google Scholar 

  15. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys.: Condens. Matter 14, 2717 (2002)

    ADS  Google Scholar 

  16. W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)

    Article  ADS  Google Scholar 

  17. M.C. Payne, M.P. Teter, D.C. Allan, D.C. Allan, T.A. Arias, J.D.J. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992)

    Article  ADS  Google Scholar 

  18. K. Burke, J.P. Perdew, Y. Wang. in Electronic Density Functional Theory: The PW91 Density Functional, edited by J.F. Dobson, G. Vignale, M.P. Das (Springer, Boston, MA, 1998)

  19. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  20. D.R. Hammann, M. Schluter, C. Chiang, Phys. Rev. Lett. 43, 1494 (1979)

    Article  ADS  Google Scholar 

  21. Y.S. Zhao, D.J. Weidner, J.B. Parise, D.E. Cox, Phys. Earth Planet. Inter. 76, 1 (1993)

    Article  ADS  Google Scholar 

  22. M. Korsukova, in Proceedings of the 11thInternational Symposium on Boron, Borides and Related Compounds, JJAP Series 10 (1994), Vol. 15

  23. G.E. Grechnev, A.E. Baranovskiy, V.D. Fil, T.V. Ignatova, I.G. Kolobov, A.V. Logosha, Fiz. Nizk. Temp. 34, 1167 (2008)

    Google Scholar 

  24. J.F. Nye, Physical Properties of Crystals (Clarendon Press, Oxford, 1985)

  25. W. Voigt, Lehrbuch der Kristallphysik (B.G. Teubner, Leipzig-Berlin, 1928), p. 739

  26. A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929)

    Article  Google Scholar 

  27. R. Hill, Proc. Phys. Soc. 65, 349 (1952)

    Article  ADS  Google Scholar 

  28. Y. Tian, B. Xu, Z. Zhao, Int. J. Refract. Metals Hard Mater. 33, 93 (2012)

    Article  Google Scholar 

  29. L.O. Anderson, J. Phys. Chem. Solids. 24, 909 (1963)

    Article  ADS  Google Scholar 

  30. J.P. Poirier, Introduction to the Physics of the Earth’s Interior (Cambridge University Press, 2000)

  31. Y.S. Ponosova, N.Y. Shitsevalova, JETP Lett. 102, 295 (2015)

    Article  ADS  Google Scholar 

  32. H. Bando, T. Hasegawa, N. Ogita, M. Udagawa, F. Iga, J. Phys. Soc. Jpn. 80, SA053 (2011)

    Article  ADS  Google Scholar 

  33. R. Lortz, Y. Wang, U. Tutsch, S. Abe, C. Meingast, P. Popovich, W. Knafo, N. Shitsevalova, Yu.B. Paderno, A. Junod, Phys. Rev. B 73, 024512 (2006)

    Article  ADS  Google Scholar 

  34. T. Gürel, R. Eryiğit, Phys. Rev. B 82, 104302 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Romero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero, M., Benitez-Rico, A., Arévalo-López, E.P. et al. First-principles calculations of the structural, elastic, vibrational and electronic properties of YB6 compound under pressure. Eur. Phys. J. B 92, 159 (2019). https://doi.org/10.1140/epjb/e2019-100080-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100080-1

Keywords

Navigation