Skip to main content
Log in

The influence of nonlocal interactions on valence transitions and formation of excitonic bound states in the generalized Falicov–Kimball model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We use the density-matrix-renormalization-group (DMRG) method to study the combined effects of nonlocal interactions on valence transitions and the formation of excitonic bound states in the generalized Falicov–Kimball model. In particular, we consider the nearest-neighbour Coulomb interaction Unn between two d, two f, d and f electrons as well as the so-called correlated hopping term Uch and examine their effects on the density of conduction nd (valence nf) electrons and the excitonic momentum distribution N(q). It is shown that Unn and Uch exhibit very strong and fully different effects on valence transitions and the formation (condensation) of excitonic bound states. While the nonlocal interaction Unn suppresses the formation of zero momentum condensate (N(q = 0)) and stabilizes the intermediate valence phases with nd ~ 0.5, nf ~ 0.5, the correlated hopping term Uch significantly enhances the number of excitons in the zero-momentum condensate and suppresses the stability region of intermediate valence phases. The physically most interesting results are observed if both Unn and Uch are nonzero, when the combined effects of Unn and Uch are able to generate discontinuous changes in nf, N(q = 0) and some other ground-state quantities.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.M. Falicov, J.C. Kimball, Phys. Rev. Lett. 22, 997 (1969)

    Article  ADS  Google Scholar 

  2. D.L. Khomskii, in Quantum Theory of Solids, edited by I.M. Lifshitz (Mir, Moscow, 1982)

  3. T. Portengen, T. Östreich, L.J. Sham, Phys. Rev. Lett. 76, 3384 (1996)

    Article  ADS  Google Scholar 

  4. T. Portengen, T. Östreich, L.J. Sham, Phys. Rev. B 54, 17452 (1996)

    Article  ADS  Google Scholar 

  5. G. Czycholl, Phys. Rev. B 59, 2642 (1999)

    Article  ADS  Google Scholar 

  6. P. Farkašovský, Phys. Rev. B 59, 9707 (1999)

    Article  ADS  Google Scholar 

  7. P. Farkašovský, Phys. Rev. B 65, 81102 (2002)

    Article  ADS  Google Scholar 

  8. V. Zlatić, J.K. Freericks, R. Lemanski, G. Czycholl, Philos. Mag. B 81, 1443 (2001)

    Article  ADS  Google Scholar 

  9. C.D. Batista, Phys. Rev. Lett. 89, 166403 (2002)

    Article  ADS  Google Scholar 

  10. C.D. Batista, J.E. Gubernatis, J. Bonca, H.Q. Lin, Phys. Rev. Lett. 92, 187601 (2004)

    Article  ADS  Google Scholar 

  11. P. Farkašovský, Phys. Rev. B 77, 155130 (2008)

    Article  ADS  Google Scholar 

  12. C. Schneider, G. Czycholl, Eur. Phys. J. B 64, 43 (2008)

    Article  ADS  Google Scholar 

  13. B. Zenker, D. Ihle, F.X. Bronold, H. Fehske, Phys. Rev. B 81, 115122 (2010)

    Article  ADS  Google Scholar 

  14. V.N. Phan, K.W. Becker, H. Fehske, Phys. Rev. B 81, 205117 (2010)

    Article  ADS  Google Scholar 

  15. K. Seki, R. Eder, Y. Ohta, Phys. Rev. B 84, 245106 (2011)

    Article  ADS  Google Scholar 

  16. B. Zenker, D. Ihle, F.X. Bronold, H. Fehske, Phys. Rev. B 85, 121102R (2012)

    Article  ADS  Google Scholar 

  17. T. Kaneko, K. Seki, Y. Ohta, Phys. Rev. B 85, 165135 (2012)

    Article  ADS  Google Scholar 

  18. T. Kaneko, S. Ejima, H. Fehske, Y. Ohta, Phys. Rev. B 88, 035312 (2013)

    Article  ADS  Google Scholar 

  19. S. Ejima, T. Kaneko, Y. Ohta, H. Fehske, Phys. Rev. Lett. 112, 026401 (2014)

    Article  ADS  Google Scholar 

  20. P. Farkašovský, Europhys. Lett. 110, 47007 (2015)

    Article  ADS  Google Scholar 

  21. P. Farkašovský, Phys. Rev. B 95, 041406 (2017)

    Article  Google Scholar 

  22. P. Farkašovský, Solid State Commun. 255, 24 (2017)

    Article  ADS  Google Scholar 

  23. J. Neuenschwander, P. Wachter, Phys. Rev. 41, 12693 (1990)

    Article  Google Scholar 

  24. B. Bucher, P. Steiner, P. Wachter, Phys. Rev. Lett. 67, 2717 (1991)

    Article  ADS  Google Scholar 

  25. P. Farkašovský, Acta Phys. Slov. 60, 497 (2010)

    ADS  Google Scholar 

  26. P. Farkašovský, Acta Phys. Pol. A 113, 287 (2008)

    Article  ADS  Google Scholar 

  27. R. Lemański, K. Jerzy Kapcia, S. Robaszkiewicz, Phys. Rev. B 96, 205102 (2017)

    Article  ADS  Google Scholar 

  28. S.R. White, Phys. Rev. Lett. 69, 2863 (1992)

    Article  ADS  Google Scholar 

  29. C.E.T. Goncalves da Silva, L.M. Falicov, Solid State Commun. 17, 1521 (1975)

    Article  ADS  Google Scholar 

  30. J. Rohler, in Handbook on the Physics and Chemistry of Rare Earths, edited by K.A. Gschneider, L.R. Eyring, S. Huffner (North-Holland, Amsterdam, 1978), Vol. 10, p. 453

  31. G. Czycholl, Phys. Rep. 246, 401 (1986)

    Google Scholar 

  32. W. Hanke, J.E. Hirsch, Phys. Rev. B 25, 6748 (1982)

    Article  ADS  Google Scholar 

  33. P. Farkašovský, Z. Phys. B 104, 553 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavol Farkašovský.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farkašovský, P. The influence of nonlocal interactions on valence transitions and formation of excitonic bound states in the generalized Falicov–Kimball model. Eur. Phys. J. B 92, 141 (2019). https://doi.org/10.1140/epjb/e2019-100051-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100051-6

Keywords

Navigation