Skip to main content

Advertisement

Log in

Real and imaginary energy gaps: a comparison between single excitation Superradiance and Superconductivity and robustness to disorder

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A comparison between the single particle spectrum of the discrete Bardeen-Cooper-Schrieffer (BCS) model, used for small superconducting grains, and the spectrum of a paradigmatic model of Single Excitation Superradiance (SES) is presented. They are both characterized by an equally spaced energy spectrum (Picket Fence) where all the levels are coupled between each other by a constant coupling which is real for the BCS model and purely imaginary for the SES model. While the former corresponds to the discrete BCS-model describing the coupling of Cooper pairs in momentum space and it induces a Superconductive regime, the latter describes the coupling of single particle energy levels to a common decay channel and it induces a Superradiant transition. We show that the transition to a Superradiant regime can be connected to the emergence of an imaginary energy gap, similarly to the transition to a Superconductive regime where a real energy gap emerges. Despite their different physical origin, it is possible to show that both the Superradiant and the Superconducting gaps have the same magnitude in the large gap limit. Nevertheless, some differences appear: while the critical coupling at which the Superradiant gap appears is independent of the system size N, for the Superconductivity gap it scales as (ln N)−1, which is the expected BCS result. The presence of a gap in the imaginary energy axis between the Superradiant and the Subradiant states shares many similarities with the “standard” gap on the real energy axis: the superradiant state is protected against disorder from the imaginary gap as well as the superconducting ground state is protected by the real energy gap. Moreover we connect the origin of the gapped phase to the long-range nature of the coupling between the energy levels.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Anderson, Science 325, 1510 (1972)

    Google Scholar 

  2. E. Dagotto, Science 309, 257 (2005)

    Article  ADS  Google Scholar 

  3. A.F. van Loo, A. Fedorov, K. Lalumiere, B.C. Sanders, A. Blais, A. Wallraff, Science 432, 1494 (2013)

    Article  ADS  Google Scholar 

  4. E. Akkermans, A. Gero, R. Kaiser, Phys. Rev. Lett. 101, 103602 (2008)

    Article  ADS  Google Scholar 

  5. L. Santos, F. Borgonovi, G.L. Celardo, Phys. Rev. Lett. 116, 250402 (2016)

    Article  ADS  Google Scholar 

  6. T. Laurent, Y. Todorov, A. Vasanelli, A. Delteil, C. Sirtori, Phys. Rev. Lett. 115, 187402 (2015)

    Article  ADS  Google Scholar 

  7. V.N. Pustovit, T.V. Shahbazyan, Phys. Rev. Lett. 102, 077401 (2009)

    Article  ADS  Google Scholar 

  8. J. Strumpfer, M. Sener, K. Schulten, J. Phys. Chem. Lett. 3, 536 (2012)

    Article  Google Scholar 

  9. G.L. Celardo, F. Borgonovi, M. Merkli, V.I. Tsifrinovich, G.P. Berman, J. Phys. Chem. C 116, 22105 (2012)

    Article  Google Scholar 

  10. K.D.B. Higgins, S.C. Benjamin, T.M. Stace, G.J. Milburn, B.W. Lovett, E.M. Gauger, Nat. Commun. 5, 4705 (2014)

    Article  ADS  Google Scholar 

  11. G.L. Celardo, P. Poli, L. Lussardi, F. Borgonovi, Phys. Rev. B 90, 085142 (2014)

    Article  ADS  Google Scholar 

  12. G.L. Celardo, G.G. Giusteri, F. Borgonovi, Phys. Rev. B 90, 075113 (2014)

    Article  ADS  Google Scholar 

  13. G.L. Celardo, A. Biella, L. Kaplan, F. Borgonovi, Fortschr. Phys. 61, 250 (2013)

    Article  MathSciNet  Google Scholar 

  14. A. Biella, F. Borgonovi, R. Kaiser, G.L. Celardo, Europhys. Lett. 103, 57009 (2013)

    Article  ADS  Google Scholar 

  15. U. Fano, Rev. Mod. Phys. 64, 313 (1992)

    Article  ADS  Google Scholar 

  16. F.T. Arecchi, R. Bonifacio, M.O. Scully (Eds.), in Coherence in Spectroscopy and Modern Physics, NATO Advanced Study Institutes Series (Series B: Physics) (Springer, Boston, MA, 1978), Vol. 37

  17. A. DiRienzo, D. Rogovin, M. Scully, R. Bonifacio, L. Lugiato, M. Milani, Superconductivity and Quantum Optics, in Coherence in Spectroscopy and Modern Physics, edited by F.T. Arecchi, R. Bonifacio, M.O. Scully, NATO Advanced Study Institutes Series (Series B: Physics) (Springer, Boston, MA, 1978), Vol. 37

  18. M.O. Scully, A.A. Svidzinsky, Science 325, 1510 (2009)

    Article  Google Scholar 

  19. W. Guerin, M.O. Araujo, R. Kaiser, Phys. Rev. Lett. 116, 083601 (2016)

    Article  ADS  Google Scholar 

  20. R. Monshouwer, M. Abrahamsson, F. Van Mourik, R. Van Grondelle, J. Phys. Chem. B 101, 7241 (1997)

    Article  Google Scholar 

  21. C. Jung, M. Müller, I. Rotter, Phys. Rev. E 60, 114 (1999)

    Article  ADS  Google Scholar 

  22. V.V. Sokolov, V.G. Zelevinsky, Phys. Lett. B 202, 10 (1988)

    Article  ADS  Google Scholar 

  23. I. Rotter, Rep. Prog. Phys. 54, 635 (1991)

    Article  ADS  Google Scholar 

  24. J. von Delft, Ann. Phys. 3, 219 (2001)

    Article  Google Scholar 

  25. A. Faribault, P. Calabrese, J.S. Caux, Phys. Rev. B 77, 064503 (2008)

    Article  ADS  Google Scholar 

  26. R.A. Smith, V. Ambegaokar, Phys. Rev. Lett. 77, 24 (1996)

    Article  Google Scholar 

  27. M. Schechter, J. von Delft, Y. Imry, Y. Levinson, Phys. Rev. B 67, 064506 (2003)

    Article  ADS  Google Scholar 

  28. E.A. Yuzbashyan, A.A. Baytin, B.L. Altshuler, Phys. Rev. B 71, 094505 (2005)

    Article  ADS  Google Scholar 

  29. H.K. Owusu, K. Wagh, E.A. Yuzbashyan, J. Phys. A: Math. Theor. 42, 035206 (2009)

    Article  ADS  Google Scholar 

  30. E.A. Yuzbashyan, B.S. Shastry, J. Stat. Phys. 150, 704 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  31. L.N. Cooper, Phys. Rev. 104, 1189 (1956)

    Article  ADS  Google Scholar 

  32. G.L. Celardo, V.G. Zelevinsky, F. Izrailev, G.P. Berman, Phys. Rev. E 76, 031119 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  33. G.L. Celardo, N. Auerbach, F.M. Izrailev, V.G. Zelevinsky, Phys. Rev. Lett. 106, 042501 (2011)

    Article  ADS  Google Scholar 

  34. S. Sorathia, F.M. Izrailev, G.L. Celardo, V.G. Zelevinsky, G.P. Berman, Europhys. Lett. 88, 27003 (2009)

    Article  ADS  Google Scholar 

  35. G.L. Celardo, F.M. Izrailev, V.G. Zelevinsky, G.P. Berman, Phys. Lett. B 659, 170 (2008)

    Article  ADS  Google Scholar 

  36. A. Biella, F. Borgonovi, R. Kaiser, G.L. Celardo, Europhys. Lett. 103, 57009 (2013)

    Article  ADS  Google Scholar 

  37. G.G. Giusteri, F. Recrosi, G. Schaller, G.L. Celardo, Phys. Rev. E 96, 012113 (2017)

    Article  ADS  Google Scholar 

  38. G.G. Giusteri, F. Mattiotti, G.L. Celardo, Phys. Rev. B 91, 094301 (2015)

    Article  ADS  Google Scholar 

  39. G.L. Celardo, R. Kaiser, F. Borgonovi, Phys. Rev. B 94, 144206 (2016)

    Article  ADS  Google Scholar 

  40. L.F. Santos, F. Borgonovi, G.L. Celardo, Phys. Rev. Lett. 116, 250402 (2016)

    Article  ADS  Google Scholar 

  41. P. Jurcevic, B.P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, C.F. Roos, Nature (London) 511, 202 (2014)

    Article  ADS  Google Scholar 

  42. P. Richerme, Z.-X. Gong, A. Lee, C. Senko, J. Smith, M. Foss-Feig, S. Michalakis, A.V. Gorshkov, C. Monroe, Nature (London) 511, 198 (2014)

    Article  ADS  Google Scholar 

  43. J.R. Schrieffer, Theory of superconductivity (Westview Press, 1964)

  44. G. De Gennes, in Superconductivity of Metals and Alloys (Addison-Wesley Publishing Company, 1966), p. 93

  45. G.A. Álvarez et al., J. Chem. Phys. 124, 194507 (2006)

    Article  ADS  Google Scholar 

  46. H.M. Pastawski, Physica B 398, 278 (2007)

    Article  ADS  Google Scholar 

  47. A.D. Dente, R.A. Bustos-Marún, H.M. Pastawski, Phys. Rev. A 78, 062116 (2008)

    Article  ADS  Google Scholar 

  48. A. Ruderman et al., J. Phys.: Condens. Matter 27, 315501 (2015)

    Google Scholar 

  49. M. Gullì, A. Valzelli, F. Mattiotti, M. Angeli, F. Borgonovi, G.L. Celardo, New J. Phys. 21, 01301 (2019)

    Article  Google Scholar 

  50. J. Schachenmayer, C. Genes, E. Tignone, G. Pupillo, Phys. Rev. Lett. 114, 196403 (2015)

    Article  ADS  Google Scholar 

  51. J. Feist, F.J. Garcia-Vidal, Phys. Rev. Lett. 114, 196402 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fausto Borgonovi.

Additional information

Contribution to the Topical Issue “Recent Advances in the Theory of Disordered Systems”, edited by Ferenc Iglói and Heiko Rieger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chávez, N.C., Mattiotti, F., Méndez-Bermúdez, J.A. et al. Real and imaginary energy gaps: a comparison between single excitation Superradiance and Superconductivity and robustness to disorder. Eur. Phys. J. B 92, 144 (2019). https://doi.org/10.1140/epjb/e2019-100016-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100016-3

Navigation