Skip to main content
Log in

Complex band-structure analysis and topological physics of Majorana nanowires

  • Colloquium
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We review applications of complex band structure theory to describe Majorana states in nanowires and nanowire junctions. The dimensionality of the considered wires is gradually increased, from strictly 1D to quasi-1D with one and two transverse dimensions. The complex wave number analysis is applied to two main types of Majorana modes: end states in hybrid semiconductor wires and chiral edge states in hybrid wires of quantum-anomalous Hall insulators. In topological NS and NSN junctions with Majorana modes conductance oscillations and spatial distributions of density and current are described. Finally, the optical absorption in finite systems with both types of Majorana modes is considered.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Majorana, Nuovo Cimento 14, 171 (1937)

    Article  Google Scholar 

  2. V. Mourik, K. Zuo, S. Frolov et al., Science 336, 1003 (2012)

    Article  ADS  Google Scholar 

  3. M.T. Deng, C.L. Yu, G.Y. Huang et al., Nano Lett. 12, 6414 (2012)

    Article  ADS  Google Scholar 

  4. L.P. Rokhinson, X. Liu, J.K. Furdyna, Nat. Phys. 8, 795 (2012)

    Article  Google Scholar 

  5. A. Das, Y. Ronen, Y. Most et al., Nat. Phys. 8, 887 (2012)

    Article  Google Scholar 

  6. A.D.K. Finck, D.J. Van Harlingen, P.K. Mohseni et al., Phys. Rev. Lett. 110, 126406 (2013)

    Article  ADS  Google Scholar 

  7. Ö. Gül, H. Zhang, J.D.S. Bommer et al., Nat. Nanotechnol. 13, 192 (2018)

    Article  ADS  Google Scholar 

  8. H. Zhang, C.-X. Liu, S. Gazibegovic et al., Nature 556, 74 (2018)

    Article  ADS  Google Scholar 

  9. J. Alicea, Rep. Prog. Phys. 75, 076501 (2012)

    Article  ADS  Google Scholar 

  10. C.W.J. Beenakker, Ann. Rev. Condens. Matter Phys. 4, 113 (2013)

    Article  ADS  Google Scholar 

  11. M. Franz, Nat. Nano 8, 149 (2013)

    Article  Google Scholar 

  12. T.D. Stanescu, S. Tewari, J. Phys.: Condens. Matter 25, 233201 (2013)

    ADS  Google Scholar 

  13. R. Aguado, Riv. Nuovo Cimento 40, 523 (2017)

    Google Scholar 

  14. R.M. Lutchyn, E.P.A.M. Bakkers, L.P. Kouwenhoven et al., Nat. Rev. Mater. 3, 52 (2018)

    Article  ADS  Google Scholar 

  15. P.F. Bagwell, Phys. Rev. B 41, 10354 (1990)

    Article  ADS  Google Scholar 

  16. J. Barbosa, P. Butcher, Superlattices Microstruct. 22, 325 (1997)

    Article  ADS  Google Scholar 

  17. J.K. Tomfohr, O.F. Sankey, Phys. Rev. B 65, 245105 (2002)

    Article  ADS  Google Scholar 

  18. L. Serra, Phys. Rev. B 87, 075440 (2013)

    Article  ADS  Google Scholar 

  19. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  20. X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  21. C.-K. Chiu, J.C.Y. Teo, A.P. Schnyder et al., Rev. Mod. Phys. 88, 035005 (2016)

    Article  ADS  Google Scholar 

  22. Q.L. He, L. Pan, A.L. Stern et al., Science 357, 294 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. X.-L. Qi, T.L. Hughes, S.-C. Zhang, Phys. Rev. B 82, 184516 (2010)

    Article  ADS  Google Scholar 

  24. S.B. Chung, X.-L. Qi, J. Maciejko et al., Phys. Rev. B 83, 100512 (2011)

    Article  ADS  Google Scholar 

  25. J. Wang, B. Lian, H. Zhang et al., Phys. Rev. Lett. 111, 086803 (2013)

    Article  ADS  Google Scholar 

  26. J. Wang, B. Lian, S.-C. Zhang, Phys. Rev. B 89, 085106 (2014)

    Article  ADS  Google Scholar 

  27. J. Wang, Q. Zhou, B. Lian et al., Phys. Rev. B 92, 064520 (2015)

    Article  ADS  Google Scholar 

  28. B. Lian, J. Wang, S.-C. Zhang, Phys. Rev. B 93, 161401 (2016)

    Article  ADS  Google Scholar 

  29. B. Lian, X.-Q. Sun, A. Vaezi et al., Proc. Natl. Acad. Sci. 115, 10938 (2018)

    Article  ADS  Google Scholar 

  30. B. Lian, J. Wang, X.-Q. Sun et al., Phys. Rev. B 97, 125408 (2018)

    Article  ADS  Google Scholar 

  31. HSL (2013). A collection of Fortran codes for large scale scientific computation, http://www.hsl.rl.ac.uk (accessed 6 January 2019)

  32. L. Serra, D. Sánchez, R. López, Phys. Rev. B 76, 045339 (2007)

    Article  ADS  Google Scholar 

  33. R.B. Lehoucq, D.C. Sorensen, C. Yang, ARPACK Users Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (SIAM, Philadelphia, 1998)

  34. F. Tisseur, K. Meerbergen, SIAM Rev. 43, 235 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  35. Y. Oreg, G. Refael, F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010)

    Article  ADS  Google Scholar 

  36. J. Osca, D. Ruiz, L. Serra, Phys. Rev. B 89, 245405 (2014)

    Article  ADS  Google Scholar 

  37. P. San-Jose, E. Prada, R. Aguado, Phys. Rev. Lett. 112, 137001 (2014)

    Article  ADS  Google Scholar 

  38. R.M. Lutchyn, T.D. Stanescu, S. Das Sarma, Phys. Rev. Lett. 106, 127001 (2011)

    Article  ADS  Google Scholar 

  39. R.M. Lutchyn, M.P.A. Fisher, Phys. Rev. B 84, 214528 (2011)

    Article  ADS  Google Scholar 

  40. J.S. Lim, L. Serra, R. Lopez et al., Phys. Rev. B 86, 121103 (2012)

    Article  ADS  Google Scholar 

  41. J. Osca, L. Serra, Phys. Rev. B 91, 235417 (2015)

    Article  ADS  Google Scholar 

  42. M. Hu, X. Zhang, K.P. Giapis et al., Phys. Rev. B 84, 085442 (2011)

    Article  ADS  Google Scholar 

  43. B.M. Wong, F. Léonard, Q. Li et al., Nano Lett. 11, 3074 (2011)

    Article  ADS  Google Scholar 

  44. C. Blömers, T. Rieger, P. Zellekens et al., Nanotechnology 24, 035203 (2013)

    Article  ADS  Google Scholar 

  45. F. Qian, M. Brewster, S.K. Lim et al., Nano Lett. 12, 3344 (2012)

    Article  ADS  Google Scholar 

  46. M. Heurlin, T. Stankevič, S. Mickevičius et al., Nano Lett. 15, 2462 (2015)

    Article  ADS  Google Scholar 

  47. X. Yuan, P. Caroff, F. Wang et al., Adv. Funct. Mater. 25, 5300 (2015)

    Article  Google Scholar 

  48. A. Manolescu, A. Sitek, J. Osca et al., Phys. Rev. B 96, 125435 (2017)

    Article  ADS  Google Scholar 

  49. J.T. Londergan, J.P. Carini, D.P. Murdock, Binding and Scattering in Two-Dimensional Systems. Applications to Quantum Wires, Waveguides and Photonic Crystals (Springer, Berlin, 1999)

  50. C. Estarellas, L. Serra, Superlattices Microstruct. 83, 184 (2015)

    Article  ADS  Google Scholar 

  51. C. Estarellas, L. Serra, Phys. Rev. E 93, 032105 (2016)

    Article  ADS  Google Scholar 

  52. C.S. Lent, D.J. Kirkner, J. Appl. Phys. 67, 6353 (1990)

    Article  ADS  Google Scholar 

  53. C.W.J. Beenakker, Phys. Rev. B 46, 12841 (1992)

    Article  ADS  Google Scholar 

  54. Y. Takagaki, Phys. Rev. B 57, 4009 (1998)

    Article  ADS  Google Scholar 

  55. Y. Asano, Phys. Rev. B 61, 1732 (2000)

    Article  ADS  Google Scholar 

  56. H. Hoppe, U. Zülicke, G. Schön, Phys. Rev. Lett. 84, 1804 (2000)

    Article  ADS  Google Scholar 

  57. F. Giazotto, M. Governale, U. Zülicke et al., Phys. Rev. B 72, 054518 (2005)

    Article  ADS  Google Scholar 

  58. J. Eroms, D. Weiss, J.D. Boeck et al., Phys. Rev. Lett. 95, 107001 (2005)

    Article  ADS  Google Scholar 

  59. N.M. Chtchelkatchev, I.S. Burmistrov, Phys. Rev. B 75, 214510 (2007)

    Article  ADS  Google Scholar 

  60. P. Rakyta, A. Kormányos, Z. Kaufmann et al., Phys. Rev. B 76, 064516 (2007)

    Article  ADS  Google Scholar 

  61. I.M. Khaymovich, N.M. Chtchelkatchev, I.A. Shereshevskii et al., EPL (Europhys. Lett.) 91, 17005 (2010)

    Article  ADS  Google Scholar 

  62. P. Carmier, Phys. Rev. B 88, 165415 (2013)

    Article  ADS  Google Scholar 

  63. J. Osca, L. Serra, Phys. Status Solidi B 254, 1700135 (2017)

    Article  ADS  Google Scholar 

  64. J. Osca, L. Serra, Phys. Rev. B 98, 121407 (2018)

    Article  ADS  Google Scholar 

  65. Y.-T. Zhang, Z. Hou, X.C. Xie et al., Phys. Rev. B 95, 245433 (2017)

    Article  ADS  Google Scholar 

  66. Y.-F. Zhou, Z. Hou, Y.-T. Zhang et al., Phys. Rev. B 97, 115452 (2018)

    Article  ADS  Google Scholar 

  67. T.O. Rosdahl, A. Vuik, M. Kjaergaard et al., Phys. Rev. B 97, 045421 (2018)

    Article  ADS  Google Scholar 

  68. R.W. Reinthaler, P. Recher, E.M. Hankiewicz, Phys. Rev. Lett. 110, 226802 (2013)

    Article  ADS  Google Scholar 

  69. A.R. Akhmerov, J. Nilsson, C.W.J. Beenakker, Phys. Rev. Lett. 102, 216404 (2009)

    Article  ADS  Google Scholar 

  70. L. Fu, C.L. Kane, Phys. Rev. Lett. 102, 216403 (2009)

    Article  ADS  Google Scholar 

  71. H.S. Røising, S.H. Simon, Phys. Rev. B 97, 115424 (2018)

    Article  ADS  Google Scholar 

  72. J. Osca, L. Serra, Phys. Status Solidi C 12, 1409 (2015)

    Article  ADS  Google Scholar 

  73. D. Ruiz, J. Osca, L. Serra, J. Phys.: Condens. Matter 27, 125302 (2015)

    ADS  Google Scholar 

  74. J. Osca, L. Serra, Beilstein J. Nanotechnol. 9, 1194 (2018)

    Article  Google Scholar 

  75. J. Osca, L. Serra, Eur. Phys. J B 90, 28 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Osca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osca, J., Serra, L. Complex band-structure analysis and topological physics of Majorana nanowires. Eur. Phys. J. B 92, 101 (2019). https://doi.org/10.1140/epjb/e2019-100011-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100011-2

Keywords

Navigation