Skip to main content
Log in

Finite temperature phase transition in the two-dimensional Coulomb glass at low disorders

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present numerical evidence using Monte Carlo simulations of finite temperature phase transition in two dimensional Coulomb Glass lattice model with random site energies at half-filling. For the disorder strengths (W) studied in this paper, we find the existence of charge-ordered phase (COP) below the critical temperature (Tc(W)). Also, the probability distribution of staggered magnetization calculated at each W shows a two-peak structure at their respective critical temperature. Thus the phase transition from fluid to COP as a function of temperature is second order for all W. We find no evidence of a spin glass phase between a fluid and the COP. Further, we have used finite-size scaling analysis to calculate the critical exponents. The critical exponents at zero disorder are different from the one found at finite disorders, which indicates that the disorder is a relevant parameter here. The critical exponent for correlation length ν increases and Tc decreases with increasing disorder. Similar behaviour for ν was seen in the work of Overlin et al. for three dimensional Coulomb Glass model with a positional disorder. Our study also shows that other critical exponents are also a function of disorder.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors (Springer, Heidelberg, 1984)

  2. M. Pollak, M. Ortuño, A. Frydman, The Electron Glass (Cambridge University Press, New York, 2013)

  3. I.S. Beloborodov, A.V. Lopatin, V.M. Vinokur, Rev. Mod. Phys. 79, 469 (2007)

    Article  ADS  Google Scholar 

  4. A. Glatz, I.S. Beloborodov, Phys. Rev. B 80, 245440 (2009)

    Article  ADS  Google Scholar 

  5. J. Zhang, B.I. Shklovskii, Phys. Rev. B 70, 115317 (2004)

    Article  ADS  Google Scholar 

  6. A.L. Efros, B.I. Shklovskii, J. Phys. C 8, L49 (1975)

    Article  ADS  Google Scholar 

  7. M. Pollak, Discuss. Faraday Soc. 50, 13 (1970)

    Article  Google Scholar 

  8. G. Srinivasan, Phys. Rev. B 4, 2581 (1971)

    Article  ADS  Google Scholar 

  9. J.H. Davies, P.A. Lee, T.M. Rice, Phys. Rev. B 29, 4260 (1984)

    Article  ADS  Google Scholar 

  10. A.L. Efros, Phys. Rev. Lett. 68, 2208 (1992)

    Article  ADS  Google Scholar 

  11. F.G. Pikus, A.L. Efros, Phys. Rev. Lett. 73, 3014 (1994)

    Article  ADS  Google Scholar 

  12. M. Goethe, M. Palassini, Phys. Rev. Lett. 103, 045702 (2009)

    Article  ADS  Google Scholar 

  13. M. Müller, S. Pankov, Phys. Rev. B 75, 144201 (2007)

    Article  ADS  Google Scholar 

  14. D.R. Grempel, Europhys. Lett. 66, 854 (2004)

    Article  ADS  Google Scholar 

  15. W. Xue, P.A. Lee, Phys. Rev. B 38, 9093 (1988)

    Article  ADS  Google Scholar 

  16. D. Menashe, O. Biham, B.D. Laikhtman, A.L. Efros, Europhys. Lett. 52, 94 (2000)

    Article  ADS  Google Scholar 

  17. M. Goethe, M. Palassini, Ann. Phys. (Berlin) 18, 868 (2009)

    Article  ADS  Google Scholar 

  18. P. Bhandari, V. Malik, S.R. Ahmad, Phys. Rev. B 95, 184203 (2017)

    Article  ADS  Google Scholar 

  19. M.E.J. Newman, G.T. Barkema, Phys. Rev. E 53, 393 (1996)

    Article  ADS  Google Scholar 

  20. P. Bhandari, V. Malik, J. Phys.: Condens. Matter 29, 485402 (2017)

    Google Scholar 

  21. A. Möbius, U.K. Rössler, Phys. Rev. B 79, 174206 (2009)

    Article  ADS  Google Scholar 

  22. A.J. Bray, M.A. Moore, J. Phys. C 18, L927 (1985)

    Article  ADS  Google Scholar 

  23. D.S. Fisher, Phys. Rev. Lett. 56, 416 (1986)

    Article  ADS  Google Scholar 

  24. T. Natterman, in Spin Glasses and Random Fields, edited by A.P. Young (World Scientific, Singapore, 1997)

  25. J. Villian, J. Phys. (Paris) 46, 1843 (1985)

    Article  Google Scholar 

  26. J. Machta, M.E.J. Newman, L.B. Chayes, Phys. Rev. E 62, 8782 (2000)

    Article  ADS  Google Scholar 

  27. Y. Wu, J. Machta, Phys. Rev. B 74, 064418 (2006)

    Article  ADS  Google Scholar 

  28. U. Nowak, K.D. Usadel, Phys. Rev. B 44, 7426 (1991)

    Article  ADS  Google Scholar 

  29. F. Krzakala, F. Ricci-Tersenghi, L. Zdeborová, Phys. Rev. Lett. 104, 207208 (2010)

    Article  ADS  Google Scholar 

  30. A. Barzegar, J.C. Andresen, M. Schechter, H.G. Katzgraber, arXiv:1812.00267

  31. B. Surer, H.G. Katzgraber, G.T. Zimanyi, B.A. Allgood, G. Blatter, Phys. Rev. Lett. 102, 067205 (2009)

    Article  ADS  Google Scholar 

  32. A. Möbius, M. Richter, Phys. Rev. Lett. 105, 039701 (2010)

    Article  ADS  Google Scholar 

  33. A.A. Pastor, V. Dobrosavljević, Phys. Rev. Lett. 83, 4642 (1999)

    Article  ADS  Google Scholar 

  34. S. Pankov, V. Dobrosavljević, Phys. Rev. Lett. 94, 046402 (2005)

    Article  ADS  Google Scholar 

  35. M. Müller, L.B. Ioffe, Phys. Rev. Lett. 93, 256403 (2004)

    Article  ADS  Google Scholar 

  36. M.H. Overlin, L.A. Wong, C.C. Yu, Phys. Rev. B 70, 214203 (2004)

    Article  ADS  Google Scholar 

  37. N. Metropolish, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  38. K. Tenelsen, M. Schreiber, Phys. Rev. B 49, 12662 (1994)

    Article  ADS  Google Scholar 

  39. R.N. Bhatt, A.P. Young, Phys. Rev. Lett. 54, 924 (1985)

    Article  ADS  Google Scholar 

  40. R.N. Bhatt, A.P. Young, Phys. Rev. B 37, 5606 (1988)

    Article  ADS  Google Scholar 

  41. S.F. Edwards, P.W. Anderson, J. Phys. F 5, 965 (1975)

    Article  ADS  Google Scholar 

  42. H.G. Ballesteros, A. Cruz, L.A. Fernández, V. Martín-Mayor, J. Pech, J.J. Ruiz-Lorenzo, A. Tarancón, P. Téllez, C.L. Ullod, C. Ungil, Phys. Rev. B 62, 14237 (2000)

    Article  ADS  Google Scholar 

  43. F. Cooper, B. Freedman, D. Preston, Nucl. Phys. B 210, 210 (1982)

    Article  ADS  Google Scholar 

  44. H. Rieger, Phys. Rev. B 52, 6659 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Malik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, P., Malik, V. Finite temperature phase transition in the two-dimensional Coulomb glass at low disorders. Eur. Phys. J. B 92, 147 (2019). https://doi.org/10.1140/epjb/e2019-100006-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100006-y

Keywords

Navigation