Good influence transmission structure strengthens cooperation in prisoner’s dilemma games
- 66 Downloads
Abstract
Analysis on how network reciprocity may help promote the coordination of agents in a system has attracted attention. However, designing effective methods for searching highly cooperative population structures remains a challenge. In this article, we reveal how cooperation behavior survives and spreads from a micro perspective, and further visualize the topology of influence transmission structure that supports the spread of cooperation. Based on our analysis, a highly cooperative multilevel scale-free network (mlSFNs) model is designed and compared with other existing scale-free network models. Meanwhile, we discover the positive correlation between influence coverage rate and cooperation level from a correlation analysis toward mass sample data. Thus, we introduce one rule for highly cooperative structures: influence coverage rate is essential to cooperation, while the unaffected nodes should be less influential. In our experiments, we find that this rule can provide effective guidance to the structure optimization algorithm termed fMA-CPD-SFN, which successfully optimizes various structures subject to different strategy update rules. Moreover, fMA-CPD-SFN is also applicable to the optimization of large-scale populations. In this case, we conclude that this rule is instructive for future design of a highly cooperative population structure.
Graphical abstract
Keywords
Statistical and Nonlinear PhysicsReferences
- 1.P. Peng, Y. Wen, Y. Yang, Q. Yuan, Z. Tang, H. Long, J. Wang, https://doi.org/arXiv:1703.10069 (2017)
- 2.M.A. Nowak, R.M. May, Nature 359, 826 (1992) ADSCrossRefGoogle Scholar
- 3.R. Chiong, M. Kirley, IEEE Trans. Evol. Comput. 16, 537 (2012) CrossRefGoogle Scholar
- 4.J. Li, G. Kendall, IEEE Trans. Evol. Comput. 18, 819 (2014) CrossRefGoogle Scholar
- 5.C. Wedekind, M. Milinski, Science 288, 850 (2000) ADSCrossRefGoogle Scholar
- 6.E. Fehr, U. Fischbacher, Nature 425, 785 (2003) ADSCrossRefGoogle Scholar
- 7.M.A. Nowak, K. Sigmund, Nature 437, 1291 (2005) ADSCrossRefGoogle Scholar
- 8.M.A. Nowak, Science 314, 1560 (2006) ADSCrossRefGoogle Scholar
- 9.X. Chen, F. Fu, L. Wang, Physica A 378, 512 (2007) ADSCrossRefGoogle Scholar
- 10.Y. Li, J. Zhang, M. Perc, Appl. Math. Comput. 320, 437 (2018) MathSciNetGoogle Scholar
- 11.A. Szolnoki, M. Perc, New J. Phys. 20, 013031 (2018) ADSCrossRefGoogle Scholar
- 12.E. Lieberman, C. Hauert, M.A. Nowak, Nature 433, 312 (2005) ADSCrossRefGoogle Scholar
- 13.H. Ohtsuki, C. Hauert, E. Lieberman, M.A. Nowak, Nature 441, 502 (2006) ADSCrossRefGoogle Scholar
- 14.B. Allen, M.A. Nowak, EMS Surv. Math. Sci. 1, 113 (2014) Google Scholar
- 15.F.C. Santos, J.F. Rodrigues, J.M. Pacheco, Proc. R. Soc. Lond B 273, 51 (2006) CrossRefGoogle Scholar
- 16.C. Hauert, M. Doebeli, Nature 428, 643 (2004) ADSCrossRefGoogle Scholar
- 17.F.C. Santos, J.M. Pacheco, Phys. Rev. Lett. 95, 098104 (2005) ADSCrossRefGoogle Scholar
- 18.M. Perc, A. Szolnoki, Phys. Rev. E 77, 011904 (2008) ADSCrossRefGoogle Scholar
- 19.F.C. Santos, M.D. Santos, J.M. Pacheco, Nature 454, 213 (2008) ADSCrossRefGoogle Scholar
- 20.A. Szolnoki, M. Perc, Z. Danku, Physica A 387, 2075 2008 ADSCrossRefGoogle Scholar
- 21.L. Luthi, E. Pestelacci, M. Tomassini, Physica A 387, 955 (2008) ADSCrossRefGoogle Scholar
- 22.A. Szolnoki, M. Perc, EPL 113, 58004 (2016) Google Scholar
- 23.A. Szolnoki, M. Perc, Sci. Rep. 6, 23633 (2016) ADSCrossRefGoogle Scholar
- 24.M. Perc, A. Szolnoki, G. Szabó, Phys. Rev. E 78, 066101 (2008) ADSCrossRefGoogle Scholar
- 25.Z. Wang, A. Szolnoki, M. Perc, EPL 97, 48001 (2012) ADSCrossRefGoogle Scholar
- 26.Z. Wang, L. Wang, A. Szolnoki, M. Perc, Eur. Phys. J. B 88, 124 (2015) ADSCrossRefGoogle Scholar
- 27.D.Y. Kenett, M. Perc, S. Boccaletti, Chaos Solitons Fractals 80, 1 (2015) ADSCrossRefGoogle Scholar
- 28.Z. Wang, A. Szolnoki, M. Perc, Sci. Rep. 3, 2470 (2013) ADSCrossRefGoogle Scholar
- 29.S. György, F. Gábor, Phys. Rep. 446, 97 (2007) MathSciNetCrossRefGoogle Scholar
- 30.C. Xia, X. Li, Z. Wang, M. Perc, New J. Phys. 20, 075005 (2018) ADSCrossRefGoogle Scholar
- 31.M.G. Zimmermann, V.M. Eguíluz, M.S. Miguel, Economics with Heterogeneous Interacting Agents, Lecture Notes in Economics and Mathematical Systems (Springer, Berlin, 2001) Google Scholar
- 32.A. Szolnoki, M. Perc, EPL 86, 30007 2009 ADSCrossRefGoogle Scholar
- 33.A. Szolnoki, M. Perc, New J. Phys. 11, 093033 2009 ADSCrossRefGoogle Scholar
- 34.A. Szolnoki, M. Perc, Z. Danku, Europhys. Lett. 84, 88 (2008) CrossRefGoogle Scholar
- 35.J.M. Pacheco, A. Traulsen, M.A. Nowak, J. Theor. Biol. 243, 437 (2006) CrossRefGoogle Scholar
- 36.J.M. Pacheco, A. Traulsen, M.A. Nowak, Phys. Rev. Lett. 97, 258103 (2006) ADSCrossRefGoogle Scholar
- 37.M. Perc, A. Szolnoki, Biosystems 99, 109 (2010) CrossRefGoogle Scholar
- 38.C. Shen, C. Chu, L. Shi, M. Perc, Z. Wang, R. Soc. Open Sci. 5, 180199 2018 CrossRefGoogle Scholar
- 39.B. Allen, G. Lippner, Y. Chen, B. Fotouhi, M.A. Nowak, S. Yau, Nature 544, 227 2017 ADSCrossRefGoogle Scholar
- 40.P. Liu, J. Liu, Sci. Rep. 7, 4320 2017 ADSCrossRefGoogle Scholar
- 41.M. Zhou, J. Liu, IEEE Trans. Cybern. 47, 539 2014 Google Scholar
- 42.Y. Chi, J. Liu, IEEE Trans. Fuzzy Syst. 24, 71 (2016) CrossRefGoogle Scholar
- 43.W. Zhong, J. Liu, M. Xue, L. Jiao, IEEE Trans. Syst. Man Cybern. B 34, 1128 (2004) ADSCrossRefGoogle Scholar
- 44.C. Liu, J. Liu, Z. Jiang, IEEE Trans. Cybern. 44, 2274 2014 Google Scholar
- 45.M. Zhou, J. Liu, Physica A 410, 131 (2014) ADSCrossRefGoogle Scholar
- 46.Y. Yuan, H. Xu, B. Wang, B. Zhang, X. Yao, IEEE Trans. Evol. Comput. 20, 180 (2016) CrossRefGoogle Scholar
- 47.X. Qiu, J.X. Xu, K.C. Tan, H.A. Abbass, IEEE Trans. Evol. Comput. 20, 232 (2016) CrossRefGoogle Scholar
- 48.J. He, G. Lin, IEEE Trans. Evol. Comput. 20, 316 (2015) CrossRefGoogle Scholar
- 49.W. Du, W. Ying, G. Yan, Y. Zhu, X. Cao, IEEE Trans. Circuits Syst. II Express Briefs 64, 467 (2017) CrossRefGoogle Scholar
- 50.W. Du, Y. Gao, C. Liu, Z. Zheng, Z. Wang, Appl. Math. Comput. 268, 832 (2015) MathSciNetGoogle Scholar
- 51.S. Assenza, J. Gómez-Gardeñes, V. Latora, Phys. Rev. E 78, 017101 (2008) ADSCrossRefGoogle Scholar
- 52.A. Yamauchi, J. Tanimoto, A. Hagishima, BioSystems 102, 82 (2010) CrossRefGoogle Scholar
- 53.A.L. Barabàsi, R. Albert, Science 286, 509 (1999) ADSMathSciNetCrossRefGoogle Scholar