Skip to main content
Log in

Mimicking complex dislocation dynamics by interaction networks

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Two-dimensional discrete dislocation models exhibit complex dynamics in relaxation and under external loading. This is manifested both in the time-dependent velocities of individual dislocations and in the ensemble response, the strain rate. Here we study how well this complexity may be reproduced using so-called Interaction Networks, an artificial intelligence method for learning the dynamics of complex interacting systems. We test how to learn such networks using creep data, and show results on reproducing individual and collective dislocation velocities. The quality of reproducing the interaction kernel is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Zdeborová, Nat. Phys. 13, 420 (2017)

    Article  Google Scholar 

  2. J. Behler, J. Chem. Phys. 145, 170901 (2016)

    Article  ADS  Google Scholar 

  3. V. Botu, R. Ramprasad, Phys. Rev. B 92, 094306 (2015)

    Article  ADS  Google Scholar 

  4. T.D. Huan, R. Batra, J. Chapman, S. Krishnan, L. Chen, R. Ramprasad, NPJ Comput. Mater. 3, 37 (2017)

    Article  ADS  Google Scholar 

  5. S. Wiewel, M. Becher, N. Thuerey, https://doi.org/arXiv:1802.10123 (2018)

  6. J. Pathak, B. Hunt, M. Girvan, Z. Lu, E. Ott, Phys. Rev. Lett. 120, 024102 (2018)

    Article  ADS  Google Scholar 

  7. M. Koch-Janusz, Z. Ringel, Nat. Phys. 14, 578 (2018)

    Article  Google Scholar 

  8. J. Carrasquilla, R.G. Melko, Nat. Phys. 13, 431 (2017)

    Article  Google Scholar 

  9. E.P.L. van Nieuwenburg, Y.H. Liu, S.D. Huber, Nat. Phys. 13, 435 (2017)

    Article  Google Scholar 

  10. S.J. Wetzel, Phys. Rev. E, 96, 022140 (2017)

    Article  ADS  Google Scholar 

  11. S. Papanikolaou NPJ Comput. Mater. 4, 27 (2018)

    Article  ADS  Google Scholar 

  12. P. Battaglia, R. Pascanu, M. Lai, D.J. Rezende, inAdvances in Neural Information Processing Systems (NIPS, 2016), Vol. 29, p. 4502

  13. M.C. Miguel, A. Vespignani, S. Zapperi, J. Weiss, J.R. Grasso, Nature 410, 667 (2001)

    Article  ADS  Google Scholar 

  14. M. Zaiser, Adv. Phys. 55, 185 (2006)

    Article  ADS  Google Scholar 

  15. J. Rosti, J. Koivisto, L. Laurson, M.J. Alava, Phys. Rev. Lett. 105, 100601 (2010)

    Article  ADS  Google Scholar 

  16. P.D. Ispánovity, L. Laurson, M. Zaiser, I. Groma, S. Zapperi, M.J. Alava, Phys. Rev. Lett. 112, 235501 (2014)

    Article  ADS  Google Scholar 

  17. S. Janićević, M. Ovaska, M.J. Alava, L. Laurson, J. Stat. Mech. Theory Exp. 2015, P07016 (2015)

    Article  Google Scholar 

  18. S. Papanikolaou, Y. Cui, N. Ghoniem, Model. Simul. Mater. Sci. Eng. 26, 013001 (2017)

    Article  ADS  Google Scholar 

  19. J.P. Hirth, J. Lothe,Theory of dislocations (Krieger, Malabar, FL, 1982)

  20. P. Moretti, M.-C. Miguel, M. Zaiser, S. Zapperi, Phys. Rev. B 69, 214103 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Salmenjoki.

Additional information

Contribution to the Topical Issue “Complex Systems Science meets Matter and Materials”, edited by Stefano Zapperi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmenjoki, H., Alava, M.J. & Laurson, L. Mimicking complex dislocation dynamics by interaction networks. Eur. Phys. J. B 91, 275 (2018). https://doi.org/10.1140/epjb/e2018-90419-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90419-7

Navigation