Skip to main content

Correlations and confinement of excitations in an asymmetric Hubbard ladder


Correlation functions and low-energy excitations are investigated in the asymmetric two-leg ladder consisting of a Hubbard chain and a noninteracting tight-binding (Fermi) chain using the density matrix renormalization group method. The behavior of charge, spin and pairing correlations is discussed for the four phases found at half filling, namely, Luttinger liquid, Kondo-Mott insulator, spin-gapped Mott insulator and correlated band insulator. Quasi-long-range antiferromagnetic spin correlations are found in the Hubbard leg in the Luttinger liquid phase only. Pair-density-wave correlations are studied to understand the structure of bound pairs found in the Fermi leg of the spin-gapped Mott phase at half filling and at light doping but we find no enhanced pairing correlations. Low-energy excitations cause variations of spin and charge densities on the two legs that demonstrate the confinement of the lowest charge excitations on the Fermi leg while the lowest spin excitations are localized on the Hubbard leg in the three insulating phases. The velocities of charge, spin, and single-particle excitations are investigated to clarify the confinement of elementary excitations in the Luttinger liquid phase. The observed spatial separation of elementary spin and charge excitations could facilitate the coexistence of different (quasi-)long-range orders in higher-dimensional extensions of the asymmetric Hubbard ladder.

This is a preview of subscription content, access via your institution.


  1. 1.

    A.E. Sikkema, I. Affleck, S.R. White, Phys. Rev. Lett. 79, 929 (1997)

    ADS  Article  Google Scholar 

  2. 2.

    O. Zachar, A.M. Tsvelik, Phys. Rev. B 64, 033103 (2001)

    ADS  Article  Google Scholar 

  3. 3.

    E. Berg, E. Fradkin, S.A. Kivelson, Phys. Rev. Lett. 105, 146403 (2010)

    ADS  Article  Google Scholar 

  4. 4.

    A. Dobry, A. Jaefari, E. Fradkin, Phys. Rev. B 87, 245102 (2013)

    ADS  Article  Google Scholar 

  5. 5.

    E. Eidelstein, S. Moukouri, A. Schiller, Phys. Rev. B 84, 014413 (2011)

    ADS  Article  Google Scholar 

  6. 6.

    K.A. Al-Hassanieh, C.D. Batista, P. Sengupta, A.E. Feiguin, Phys. Rev. B 80, 115116 (2009)

    ADS  Article  Google Scholar 

  7. 7.

    L. Pan, D. Zhang, H.-H. Hung, Y.-J. Liu, Eur. Phys. J. B 90, 105 (2017)

    ADS  Article  Google Scholar 

  8. 8.

    I.K. Dash, A.J. Fisher, J. Phys.: Condens. Matter 13, 5035 (2001)

    ADS  Google Scholar 

  9. 9.

    H. Yoshizomi, T. Tohyama, T. Morinari, Prog. Theor. Phys. 122, 943 (2009)

    ADS  Article  Google Scholar 

  10. 10.

    A. Abdelwahab, E. Jeckelmann, M. Hohenadler, Phys. Rev. B 91, 155119 (2015)

    ADS  Article  Google Scholar 

  11. 11.

    A. Abdelwahab, E. Jeckelmann, M. Hohenadler, Phys. Rev. B 96, 035445 (2017)

    ADS  Article  Google Scholar 

  12. 12.

    A. Abdelwahab, E. Jeckelmann, M. Hohenadler, Phys. Rev. B 96, 035446 (2017)

    ADS  Article  Google Scholar 

  13. 13.

    R.M. Noack, S.R. White, D.J. Scalapino, Phys. Rev. Lett. 73, 882 (1994)

    ADS  Article  Google Scholar 

  14. 14.

    T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, Oxford, 2007)

  15. 15.

    S.R. White, Phys. Rev. Lett. 69, 2863 (1992)

    ADS  Article  Google Scholar 

  16. 16.

    U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005)

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    E. Jeckelmann, in Computational Many Particle Physics (Lecture Notes in Physics), edited by H. Fehske, R. Schneider, A. Weiße (Springer-Verlag, Berlin, Heidelberg, 2008), Vol. 739, p. 597

  18. 18.

    F.H.L. Eßler, H. Frahm, F. Göhmann, A. Klümper, V. Korepin, The One-Dimensional Hubbard Model (Cambridge University Press, Cambridge, 2005)

  19. 19.

    R.M. Noack, S.R. White, D.J. Scalapino, Europhys. Lett., 30, 163 (1995)

    ADS  Article  Google Scholar 

  20. 20.

    R.M. Noack, N. Bulut, D.J. Scalapino, M.G. Zacher, Phys. Rev. B 56, 7162 (1997)

    ADS  Article  Google Scholar 

  21. 21.

    N.J. Robinson, F.H.L. Essler, E. Jeckelmann, A.M. Tsvelik, Phys. Rev. B 85, 195103 (2012)

    ADS  Article  Google Scholar 

  22. 22.

    E. Jeckelmann, D.J. Scalapino, S.R. White, Phys. Rev. B 58, 9492 (1998)

    ADS  Article  Google Scholar 

  23. 23.

    A. Jaefari, E. Fradkin, Phys. Rev. B 85, 035104 (2012)

    ADS  Article  Google Scholar 

  24. 24.

    A. Osterloh, L. Amico, G. Falci, R. Fazio, Nature 416, 608 (2002)

    ADS  Article  Google Scholar 

  25. 25.

    L.-A. Wu, M.S. Sarandy, D.A. Lidar, Phys. Rev. Lett. 93, 250404 (2004)

    ADS  MathSciNet  Article  Google Scholar 

  26. 26.

    Ö. Legeza, J. Sólyom, Phys. Rev. Lett. 96, 116401 (2006)

    ADS  Article  Google Scholar 

  27. 27.

    Ö. Legeza, J. Sólyom, L. Tincani, R.M. Noack, Phys. Rev. Lett. 99, 087203 (2007)

    ADS  Article  Google Scholar 

  28. 28.

    C. Mund, Ö. Legeza, R.M. Noack, Phys. Rev. 79, 245130 (2009)

    Article  Google Scholar 

  29. 29.

    S.C. Erwin, F. Himpsel, Nat. Commun. 1, 58 (2010)

    ADS  Article  Google Scholar 

  30. 30.

    J. Aulbach, J. Schäfer, S.C. Erwin, S. Meyer, C. Loho, J. Settelein, R. Claessen, Phys. Rev. Lett. 111, 137203 (2013)

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Eric Jeckelmann.

Additional information

Contribution to the Topical Issue “Coexistence of Long-Range Orders in Low-dimensional Systems”, edited by Sudhakar Yarlagadda and Peter B. Littlewood.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdelwahab, A., Jeckelmann, E. Correlations and confinement of excitations in an asymmetric Hubbard ladder. Eur. Phys. J. B 91, 207 (2018).

Download citation