Skip to main content
Log in

Correlations and confinement of excitations in an asymmetric Hubbard ladder

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript


Correlation functions and low-energy excitations are investigated in the asymmetric two-leg ladder consisting of a Hubbard chain and a noninteracting tight-binding (Fermi) chain using the density matrix renormalization group method. The behavior of charge, spin and pairing correlations is discussed for the four phases found at half filling, namely, Luttinger liquid, Kondo-Mott insulator, spin-gapped Mott insulator and correlated band insulator. Quasi-long-range antiferromagnetic spin correlations are found in the Hubbard leg in the Luttinger liquid phase only. Pair-density-wave correlations are studied to understand the structure of bound pairs found in the Fermi leg of the spin-gapped Mott phase at half filling and at light doping but we find no enhanced pairing correlations. Low-energy excitations cause variations of spin and charge densities on the two legs that demonstrate the confinement of the lowest charge excitations on the Fermi leg while the lowest spin excitations are localized on the Hubbard leg in the three insulating phases. The velocities of charge, spin, and single-particle excitations are investigated to clarify the confinement of elementary excitations in the Luttinger liquid phase. The observed spatial separation of elementary spin and charge excitations could facilitate the coexistence of different (quasi-)long-range orders in higher-dimensional extensions of the asymmetric Hubbard ladder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. A.E. Sikkema, I. Affleck, S.R. White, Phys. Rev. Lett. 79, 929 (1997)

    Article  ADS  Google Scholar 

  2. O. Zachar, A.M. Tsvelik, Phys. Rev. B 64, 033103 (2001)

    Article  ADS  Google Scholar 

  3. E. Berg, E. Fradkin, S.A. Kivelson, Phys. Rev. Lett. 105, 146403 (2010)

    Article  ADS  Google Scholar 

  4. A. Dobry, A. Jaefari, E. Fradkin, Phys. Rev. B 87, 245102 (2013)

    Article  ADS  Google Scholar 

  5. E. Eidelstein, S. Moukouri, A. Schiller, Phys. Rev. B 84, 014413 (2011)

    Article  ADS  Google Scholar 

  6. K.A. Al-Hassanieh, C.D. Batista, P. Sengupta, A.E. Feiguin, Phys. Rev. B 80, 115116 (2009)

    Article  ADS  Google Scholar 

  7. L. Pan, D. Zhang, H.-H. Hung, Y.-J. Liu, Eur. Phys. J. B 90, 105 (2017)

    Article  ADS  Google Scholar 

  8. I.K. Dash, A.J. Fisher, J. Phys.: Condens. Matter 13, 5035 (2001)

    ADS  Google Scholar 

  9. H. Yoshizomi, T. Tohyama, T. Morinari, Prog. Theor. Phys. 122, 943 (2009)

    Article  ADS  Google Scholar 

  10. A. Abdelwahab, E. Jeckelmann, M. Hohenadler, Phys. Rev. B 91, 155119 (2015)

    Article  ADS  Google Scholar 

  11. A. Abdelwahab, E. Jeckelmann, M. Hohenadler, Phys. Rev. B 96, 035445 (2017)

    Article  ADS  Google Scholar 

  12. A. Abdelwahab, E. Jeckelmann, M. Hohenadler, Phys. Rev. B 96, 035446 (2017)

    Article  ADS  Google Scholar 

  13. R.M. Noack, S.R. White, D.J. Scalapino, Phys. Rev. Lett. 73, 882 (1994)

    Article  ADS  Google Scholar 

  14. T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, Oxford, 2007)

  15. S.R. White, Phys. Rev. Lett. 69, 2863 (1992)

    Article  ADS  Google Scholar 

  16. U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  17. E. Jeckelmann, in Computational Many Particle Physics (Lecture Notes in Physics), edited by H. Fehske, R. Schneider, A. Weiße (Springer-Verlag, Berlin, Heidelberg, 2008), Vol. 739, p. 597

  18. F.H.L. Eßler, H. Frahm, F. Göhmann, A. Klümper, V. Korepin, The One-Dimensional Hubbard Model (Cambridge University Press, Cambridge, 2005)

  19. R.M. Noack, S.R. White, D.J. Scalapino, Europhys. Lett., 30, 163 (1995)

    Article  ADS  Google Scholar 

  20. R.M. Noack, N. Bulut, D.J. Scalapino, M.G. Zacher, Phys. Rev. B 56, 7162 (1997)

    Article  ADS  Google Scholar 

  21. N.J. Robinson, F.H.L. Essler, E. Jeckelmann, A.M. Tsvelik, Phys. Rev. B 85, 195103 (2012)

    Article  ADS  Google Scholar 

  22. E. Jeckelmann, D.J. Scalapino, S.R. White, Phys. Rev. B 58, 9492 (1998)

    Article  ADS  Google Scholar 

  23. A. Jaefari, E. Fradkin, Phys. Rev. B 85, 035104 (2012)

    Article  ADS  Google Scholar 

  24. A. Osterloh, L. Amico, G. Falci, R. Fazio, Nature 416, 608 (2002)

    Article  ADS  Google Scholar 

  25. L.-A. Wu, M.S. Sarandy, D.A. Lidar, Phys. Rev. Lett. 93, 250404 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  26. Ö. Legeza, J. Sólyom, Phys. Rev. Lett. 96, 116401 (2006)

    Article  ADS  Google Scholar 

  27. Ö. Legeza, J. Sólyom, L. Tincani, R.M. Noack, Phys. Rev. Lett. 99, 087203 (2007)

    Article  ADS  Google Scholar 

  28. C. Mund, Ö. Legeza, R.M. Noack, Phys. Rev. 79, 245130 (2009)

    Article  Google Scholar 

  29. S.C. Erwin, F. Himpsel, Nat. Commun. 1, 58 (2010)

    Article  ADS  Google Scholar 

  30. J. Aulbach, J. Schäfer, S.C. Erwin, S. Meyer, C. Loho, J. Settelein, R. Claessen, Phys. Rev. Lett. 111, 137203 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Eric Jeckelmann.

Additional information

Contribution to the Topical Issue “Coexistence of Long-Range Orders in Low-dimensional Systems”, edited by Sudhakar Yarlagadda and Peter B. Littlewood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelwahab, A., Jeckelmann, E. Correlations and confinement of excitations in an asymmetric Hubbard ladder. Eur. Phys. J. B 91, 207 (2018).

Download citation

  • Received:

  • Published:

  • DOI: