Skip to main content
Log in

Magnetization plateaus and supersolid phases in an extended Shastry–Sutherland model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

New magnetization plateaus and supersolid phases are identified in an extended Shastry–Sutherland model – with additional longer range interactions and exchange anisotropy – over a wide range of interaction parameters and an applied magnetic field. The model is appropriate for describing the low energy properties of some members of the rare earth tetraborides. Using a plaquette representation and exact mapping of ground state configurations in the Ising limit, supplemented by large scale quantum Monte Carlo simulations to include the effects of exchange interactions, we have identified several magnetization plateaus and associated spin supersolid phases. Our methods enable us to elucidate the underlying structure and mechanism of formation of the supersolid phases, thus gaining deeper understanding into their emergence from competing interactions. Additionally, in this regime we find evidence of a fractional plateau at 1∕9 saturation magnetization, which may hold the clue to understanding the fractional plateau in TmB4 that exhibits magnetic hysteresis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Penrose, L. Onsager, Phys. Rev. 104, 576 (1956)

    Article  ADS  Google Scholar 

  2. M. Boninsegni, N.V. Prokof’ev, Rev. Mod. Phys. 84, 759 (2012)

    Article  ADS  Google Scholar 

  3. D.Y. Kim, M.H.W. Chan, Phys. Rev. B 90, 064503 (2014)

    Article  ADS  Google Scholar 

  4. A. Eyal, X. Mi, A.V. Talanov, J.D. Reppy, Proc. Natl. Acad. Sci., USA 113, E3203 (2016)

    Article  ADS  Google Scholar 

  5. B.S. Shastry, B. Sutherland, Physica B+C 108, 1069 (1981)

    Article  ADS  Google Scholar 

  6. H. Kageyama, K. Yoshimura, R. Stern, N. Mushnikov, K. Onizuka, M. Kato, K. Kosuge, C. Slichter, T. Goto, Y. Ueda, Phys. Rev. Lett. 82, 3168 (1999)

    Article  ADS  Google Scholar 

  7. S. Miyahara, K. Ueda, Phys. Rev. Lett. 82, 3701 (1999)

    Article  ADS  Google Scholar 

  8. K. Onizuka, H. Kageyama, Y. Narumi, K. Kindo, Y. Ueda, T. Goto, J. Phys. Soc. Jpn. 69, 1016 (2000)

    Article  ADS  Google Scholar 

  9. H. Kageyama, M. Nishi, N. Aso, K. Onizuka, T. Yosihama, K. Nukui, K. Kodama, K. Kakurai, Y. Ueda, Phys. Rev. Lett. 84, 5876 (2000)

    Article  ADS  Google Scholar 

  10. K. Kodama, M. Takigawa, M. Horvatić, C. Berthier, H. Kageyama, Y. Ueda, S. Miyahara, F. Becca, F. Mila, Science 298, 395 (2002)

    Article  ADS  Google Scholar 

  11. S. Miyahara, K. Ueda, J. Phys.: Condens. Matter 15, R327 (2003)

    ADS  Google Scholar 

  12. S.E. Sebastian, N. Harrison, P. Sengupta, C.D. Batista, S. Francoual, E. Palm, T. Murphy, N. Marcano, H.A. Dabkowska, B.D. Gaulin, Proc. Natl. Acad. Sci., USA 105, 20157 (2008)

    Article  ADS  Google Scholar 

  13. S. Yoshii, T. Yamamoto, M. Hagiwara, A. Shigekawa, S. Michimura, F. Iga, T. Takabatake, K. Kindo, J. Phys.: Conf. Ser. 51, 59 (2006)

    ADS  Google Scholar 

  14. S. Michimura, A. Shigekawa, F. Iga, M. Sera, T. Takabatake, K. Ohoyama, Y. Okabe, Physica B 378–380, 596 (2006)

    Article  Google Scholar 

  15. K. Siemensmeyer, E. Wulf, H.J. Mikeska, K. Flachbart, S. Gabáni, S. Mat’aš, P. Priputen, A. Efdokimova, N. Shitsevalova, Phys. Rev. Lett. 101, 177201 (2008)

    Article  ADS  Google Scholar 

  16. Z.Y. Meng, S. Wessel, Phys. Rev. B 78, 224416 (2008)

    Article  ADS  Google Scholar 

  17. F. Liu, S. Sachdev, https://doi.org/arXiv:0904.3018 (2009)

  18. M.C. Chang, M.F. Yang, Phys. Rev. B 79, 104411 (2009)

    Article  ADS  Google Scholar 

  19. T. Suzuki, Y. Tomita, N. Kawashima, Phys. Rev. B 80, 180405 (2009)

    Article  ADS  Google Scholar 

  20. T. Suzuki, Y. Tomita, N. Kawashima, P. Sengupta, Phys. Rev. B 82, 214404 (2010)

    Article  ADS  Google Scholar 

  21. Y.I. Dublenych, Phys. Rev. Lett. 109, 167202 (2012)

    Article  ADS  Google Scholar 

  22. Y.I. Dublenych, Phys. Rev. E 88, 022111 (2013)

    Article  ADS  Google Scholar 

  23. K. Wierschem, P. Sengupta, Phys. Rev. Lett. 110, 207207 (2013)

    Article  ADS  Google Scholar 

  24. K. Wierschem, P. Sengupta, J. Korean Phys. Soc. 63, 486 (2013)

    Google Scholar 

  25. W.C. Huang, L. Huo, G. Tian, H.R. Qian, X.S. Gao, M.H. Qin, J.M. Liu, J. Phys.: Condens. Matter 24, 386003 (2012)

    ADS  Google Scholar 

  26. P. Farkašovský, H. Čenčariková, S. Mat’aš, Phys. Rev. B 82, 054409 (2010)

    Article  ADS  Google Scholar 

  27. T. Suzuki, Private communication

  28. A.W. Sandvik, J. Kurkijärvi, Phys. Rev. B 43, 5950 (1991)

    Article  ADS  Google Scholar 

  29. O.F. Syljuåsen, A.W. Sandvik, Phys. Rev. E 66, 046701 (2002)

    Article  ADS  Google Scholar 

  30. K. Louis, C. Gros, Phys. Rev. B 70, 100410 (2004)

    Article  ADS  Google Scholar 

  31. R.G. Melko, J. Phys.: Condens. Matter 19, 145203 (2007)

    ADS  Google Scholar 

  32. A. Dorneich, M. Troyer, Phys. Rev. E 64, 066701 (2001)

    Article  ADS  Google Scholar 

  33. A.W. Sandvik, Phys. Rev. B 56, 11678 (1997)

    Article  ADS  Google Scholar 

  34. E.L. Pollock, D.M. Ceperley, Phys. Rev. B 36, 8343 (1987)

    Article  ADS  Google Scholar 

  35. W. Selke, Phys. Rep. 170, 213 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  36. L. Balents, M.P.A. Fisher, S.M. Girvin, Phys. Rev. B 65, 224412 (2002)

    Article  ADS  Google Scholar 

  37. A. Kalz, A. Honecker, S. Fuchs, T. Pruschke, Phys. Rev. B 83, 174519 (2011)

    Article  ADS  Google Scholar 

  38. A. Kalz, M. Arlego, D. Cabra, A. Honecker, G. Rossini, Phys. Rev. B 85, 104505 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinaki Sengupta.

Additional information

Contribution to the Topical Issue “Coexistence of Long-Range Orders in Low-dimensional Systems”, edited by Sudhakar Yarlagadda, and Peter B. Littlewood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wierschem, K., Zhang, Z., Wibawa, A. et al. Magnetization plateaus and supersolid phases in an extended Shastry–Sutherland model. Eur. Phys. J. B 91, 201 (2018). https://doi.org/10.1140/epjb/e2018-90356-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90356-5

Navigation