Skip to main content
Log in

Mott localization nurtures several competing and coexisting orders

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Band insulating diamond or metallic mercury differs in a fundamental fashion from materials containing Mott localized electrons. Proliferation of long range orders that compete and sometimes coexist is an important consequence of Mott localization. In this article we focus on how Mott localization creates a rich phase diagram and new physics. A projected nature of the low energy Hilbert space, as opposed to a Fermi gas like Hilbert space, underlies this. Spin, orbital and charge degree of freedom gain independence, but get quantum entangled among themselves and create novel phases. We focus on spin-half single orbital systems. Mott localization encourages entanglement of spin pairs via valence bond formation. We relate valence bond dynamics to emergent gauge fields. Emergent gauge fields in turn nurture and encourage a variety of orders, including topological orders: antiferromagnetism, spin liquids, charge, spin stripes, chiral order and robust superconducting order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G. Bednorz, K.A. Muller, Z. Phys. B 64, 189 (1986)

    Article  ADS  Google Scholar 

  2. P.W. Anderson, Science 235, 1196, (1987)

    Article  ADS  Google Scholar 

  3. P.W. Anderson, The theory of high temperature superconductivity (Princeton University Press, NY, 1996)

  4. G. Baskaran, P.W. Anderson, Phys. Rev. B 37, 580 (1988)

    Article  ADS  Google Scholar 

  5. G. Baskaran, Z. Zou, P.W. Anderson, Solid State Commun. 63, 973 (1987)

    Article  ADS  Google Scholar 

  6. X.-G. Wen, A. Zee, Phys. Rev. Lett. 62, 2873 (1989)

    Article  ADS  Google Scholar 

  7. X.-G. Wen, F. Wilczek, A. Zee, Phys. Rev. B 39, 11413 (89)

  8. P.B. Wiegmann, Phys. Rev. Lett. 60, 821 (1988)

    Article  ADS  Google Scholar 

  9. I. Affleck et al., Phys. Rev. B 38, 745 (1988)

    Article  ADS  Google Scholar 

  10. E. Dagotto, E. Fradkin, A. Moreo, Phys. Rev. B 38, 2926(R) (1988)

    Article  ADS  Google Scholar 

  11. G. Baskaran, (Unpublished)

  12. D.S. Rokhsar, S.A. Kivelson, Phys. Rev. Lett. 61, 2376 (1988)

    Article  ADS  Google Scholar 

  13. A. Kitaev, Ann. Phys. 321, 2 (2006)

    Article  ADS  Google Scholar 

  14. F.J. Burnell, C. Nayak, Phys. Rev. B 84, 125125 (2011)

    Article  ADS  Google Scholar 

  15. N. Read, S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)

    Article  ADS  Google Scholar 

  16. A.F. Albuquerque, F. Alet, R. Moessner, Phys. Rev. Lett. 109, 147204 (2012)

    Article  ADS  Google Scholar 

  17. G. Kotliar, Phys. Rev. B 37, 3664 (1988)

    Article  ADS  Google Scholar 

  18. I. Affleck, J.B. Marston, Phys. Rev. B 37, 3774 (1988)

    Article  ADS  Google Scholar 

  19. H. Fukuyama, Prog. Theor. Phys. (Suppl.) 108, 287 (1992)

    Article  ADS  Google Scholar 

  20. J. Zaanen, J. Gunnarsson, Phys. Rev. B 46, 7391 (1989)

    Article  ADS  Google Scholar 

  21. V. Emery, S.A. Kivelson, O. Zachar, Phys. Rev. 56, 6120 (1997)

    Article  ADS  Google Scholar 

  22. J.M. Tranquada et al., Phys. Rev. Lett. 78, 338 (1997)

    Article  ADS  Google Scholar 

  23. J.M. Tranquada, in Proc. of Univ. of Miami Conf. on High-Tc superconductivity (Jan, 1999), Cond-mat/9903458 (1999)

  24. V.J. Emery, S.A. Kivelson, J.M. Tranquada, Proc. Natl. Acad. Sci. USA 96, 8814 (1999)

    Article  ADS  Google Scholar 

  25. G. Baskaran, Phys. Rev. 64, 092508 (2001)

    Article  Google Scholar 

  26. G. Baskaran, Mod. Phys. Lett. B 14, 377 (2000)

    Article  ADS  Google Scholar 

  27. S.R. White, D.J. Scalapino, Phys. Rev. B 60, R753 (1999)

    Article  ADS  Google Scholar 

  28. S.R. White, D.J. Scalapino, Phys. Rev. Lett. 84, 3021 (2000)

    Article  ADS  Google Scholar 

  29. H.F. Fong et al., Phys. Rev. Lett. 75, 316 (1995)

    Article  ADS  Google Scholar 

  30. S. Liang, B. Doucot, P.W. Anderson, Phys. Rev. Lett. 61, 365 (1988)

    Article  ADS  Google Scholar 

  31. T. Hsu, Phys. Rev. B 41, 11379 (1990)

    Article  ADS  Google Scholar 

  32. G. Kotliar, J. Liu, Phys. Rev. B 38, 5142 (1988)

    Article  ADS  Google Scholar 

  33. M. Drzazga et al., Z. Phys. B 74, 67 (1989)

    Article  ADS  Google Scholar 

  34. M. Vojta, S. Sachdev, Phys. Rev. Lett. 83, 3916 (1999)

    Article  ADS  Google Scholar 

  35. C. Castellani et al., Phys. Rev. 75, 4650 (1995)

  36. J.H. Han et al., cond-mat/0006046(2000)

  37. A.W. Hunt et al., Phys. Rev. Lett. 82, 4300 (1999)

    Article  ADS  Google Scholar 

  38. R. Eder, Phys. Rev. 59, 13810 (1999)

    Article  Google Scholar 

  39. D.J. Scalapino, S.R. White, Phys. Rev. 58, 8222 (1998)

    Article  ADS  Google Scholar 

  40. E. Demler, S.C. Zhang, Nature 396, 733 (1998)

    Article  ADS  Google Scholar 

  41. D. Pines, Phys. Rep. 250, 329 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganapathy Baskaran.

Additional information

Contribution to the Topical Issue “Coexistence of Long-Range Orders in Low-dimensional Systems”, edited by Sudhakar Yarlagadda and Peter B. Littlewood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskaran, G. Mott localization nurtures several competing and coexisting orders. Eur. Phys. J. B 91, 200 (2018). https://doi.org/10.1140/epjb/e2018-90355-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90355-6

Navigation