Skip to main content
Log in

Competing effects of Hund’s splitting and symmetry-breaking perturbations on electronic order in Pb1−xSnxTe

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the effect of a uniform external magnetization on p-wave superconductivity on the (001) surface of the crystalline topological insulator (TCI) Pb1−xSnxTe. It was shown by us in an earlier work that a chiral p-wave finite-momentum pairing (FFLO) state can be stabilized in this system in the presence of weak repulsive interparticle interactions. In particular, the superconducting instability is very sensitive to the Hund’s interaction in the multiorbital TCI, and no instabilities are found to be possible for the “wrong” sign of the Hund’s splitting. Here we show that for a finite Hund’s splitting of interactions, a significant value of the external magnetization is needed to degrade the surface superconductivity, while in the absence of the Hund’s interaction, an arbitrarily small external magnetization can destroy the superconductivity. This implies that multiorbital effects in this system play an important role in stabilizing electronic order on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Fu, Phys. Rev. Lett. 106, 106802 (2011)

    Article  ADS  Google Scholar 

  2. P. Dziawa et al., Nat. Mater. 11, 1023 (2012)

    Article  ADS  Google Scholar 

  3. T.H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, L. Fu, Nat. Commun. 3, 982 (2012)

    Article  ADS  Google Scholar 

  4. Y. Tanaka, Z. Ren, T. Sato, K. Nakayama, S. Souma, T. Takahashi, K. Segawa, Y. Ando, Nat. Phys. 8, 800 (2012)

    Article  Google Scholar 

  5. S.-Y. Xu et al., Nat. Commun. 3, 1192 (2012)

    Article  Google Scholar 

  6. J. Liu, W. Duan, L. Fu, Phys. Rev. B 88, 241303 (2013)

    Article  ADS  Google Scholar 

  7. H. Yao, F. Yang, Phys. Rev. B 92, 035132 (2015)

    Article  ADS  Google Scholar 

  8. I. Dzyaloshinskii, JETP Lett. 46, 118 (1987)

    ADS  Google Scholar 

  9. I. Dzyaloshinskii, J. Phys. I 6, 119 (1996)

    Google Scholar 

  10. M. Baranov, A. Chubukov, M.YU. Kagan, Int. J. Mod. Phys. B 6, 2471 (1992)

    Article  ADS  Google Scholar 

  11. B.A. Bernevig, T.L. Hughes, S.-C. Zhang, Science 314, 1757 (2006)

    Article  ADS  Google Scholar 

  12. J. González, F. Guinea, M. Vozmediano, Europhys. Lett. 34, 711 (1996)

    Article  ADS  Google Scholar 

  13. C. Honerkamp, M. Salmhofer, Phys. Rev. Lett. 87, 187004 (2001)

    Article  ADS  Google Scholar 

  14. J.L. McChesney, A. Bostwick, T. Ohta, T. Seyller, K. Horn, J. González, E. Rotenberg, Phys. Rev. Lett. 104, 136803 (2010)

    Article  ADS  Google Scholar 

  15. M.R. Norman, Science 332, 196 (2011)

    Article  ADS  Google Scholar 

  16. V.P. Mineev, K. Samokhin, L. Landau, Introduction to unconventional superconductivity (CRC Press, USA, 1999)

  17. M. Sigrist, K. Ueda, Rev. Mod. Phys. 63, 239 (1991)

    Article  ADS  Google Scholar 

  18. N. Furukawa, T. Rice, M. Salmhofer, Phys. Rev. Lett. 81, 3195 (1998)

    Article  ADS  Google Scholar 

  19. R. Nandkishore, L. Levitov, A. Chubukov, Nat. Phys. 8, 158 (2012)

    Article  Google Scholar 

  20. J.-Q. Huang, C.-H. Hsu, H. Lin, D.-X. Yao, W.-F. Tsai, Phys. Rev. B 93, 155108 (2016)

    Article  ADS  Google Scholar 

  21. K. Le Hur, T.M. Rice, Ann. Phys. 324, 1452 (2009)

    Article  ADS  Google Scholar 

  22. S. Kundu, V. Tripathi, Phys. Rev. B 96, 205111 (2017)

    Article  ADS  Google Scholar 

  23. M. Serbyn, L. Fu, Phys. Rev. B 90, 035402 (2014)

    Article  ADS  Google Scholar 

  24. C.-Y. Huang, H. Lin, Y.J. Wang, A. Bansil, W.-F. Tsai, Phys. Rev. B 93, 205304 (2016)

    Article  ADS  Google Scholar 

  25. J. Liu, T.H. Hsieh, P. Wei, W. Duan, J. Moodera, L. Fu, Nat. Mater. 13, 178 (2014)

    Article  ADS  Google Scholar 

  26. C. Fang, M.J. Gilbert, B.A. Bernevig, Phys. Rev. Lett. 112, 046801 (2014)

    Article  ADS  Google Scholar 

  27. S.-Y. Xu et al., Nat. Phys. 8, 616 (2012)

    Article  Google Scholar 

  28. A. Chubukov, Physica C 469, 640 (2009)

    Article  ADS  Google Scholar 

  29. K. Michaeli, L. Fu, Phys. Rev. Lett. 109, 187003 (2012)

    Article  ADS  Google Scholar 

  30. Y. Nagai, Phys. Rev. B 91, 060502 (2015)

    Article  ADS  Google Scholar 

  31. A.P. Mackenzie, R.K.W. Haselwimmer, A.W. Tyler, G.G. Lonzarich, Y. Mori, S. Nishizaki, Y. Maeno, Phys. Rev. Lett. 80, 161 (1998)

    Article  ADS  Google Scholar 

  32. S. Das, L. Aggarwal, S. Roychowdhury, M. Aslam, S. Gayen, K. Biswas, G. Sheet, Appl. Phys. Lett. 109, 132601 (2016)

    Article  ADS  Google Scholar 

  33. Q.L. He et al., Science 357, 294 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarbajaya Kundu.

Additional information

Contribution to the Topical Issue “Coexistence of Long-Range Orders in Low-dimensional Systems”, edited by Sudhakar Yarlagadda and Peter B. Littlewood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, S., Tripathi, V. Competing effects of Hund’s splitting and symmetry-breaking perturbations on electronic order in Pb1−xSnxTe. Eur. Phys. J. B 91, 198 (2018). https://doi.org/10.1140/epjb/e2018-90345-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90345-8

Navigation