Effect of the hexagonal warping on the dynamical conductivity of surface states in a topological insulator

  • Qinjun Chen
  • Ye Yang
  • Chao ZhangEmail author
Regular Article


We report on the effect of hexagonal warping on the dynamical conductivity of the surface states of a topological insulator in the presence of nonmagnetic impurities. It is found that the photon energy dependent conductivities are determined by a polarization-function-liked term,  Π2 (q,ω), which contains a velocity term corresponding to the difference of group velocities between the two states due to an electron-impurity scattering. This is different from the conductivity of 2-dimentional electron systems where the conductivity depends on the inverse imaginary part of the dielectric function Im [1/κ(q,ω)]. We present both the real part and imaginary part of the polarization function with different warping strength. It is found that the warping strength can both enhance single particle excitations (SPEs) and suppress the screening effect of electrons. As a result the inverse scattering time is enhanced by up to about two orders of magnitudes. The real part of the longitudinal conductivity of the intra-band process is analog to the case with a conductivity of σ ~ μδ(ω). The broadening of the spectrum in the low energy is not only determined by chemical potential, but also dependent on the warping strength. At higher frequency, the real part of conductivity shows a jump at the threshold photon energy of μ, where the inter-band contribution takes over.


Solid State and Materials 


  1. 1.
    C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005) ADSCrossRefGoogle Scholar
  2. 2.
    B.A. Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.L. Qi, S.C. Zhang, Science 318, 766 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    J.E. Moore, L. Balents, Phys. Rev. B 75, 121306(R) (2007) ADSCrossRefGoogle Scholar
  5. 5.
    L. Fu, C.L. Kane, Phys. Rev. Lett. 100, 096407 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    W.-K. Tse, A.H. MacDonald, Phys. Rev. Lett. 105, 057401 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    X. Yao, M. Tokman, A. Belyanin, Phys. Rev. Lett. 112, 055501 (2014) ADSCrossRefGoogle Scholar
  8. 8.
    L.L. Li, W. Xu, Appl. Phys. Lett. 104, 111603 (2014) ADSCrossRefGoogle Scholar
  9. 9.
    R.V. Aguilar, J. Qi, M. Branhlek, N. Bansal, A. Azad, J. Bowlan, S. Oh, A.J. Taylor, R.P. Prasankumar, D.A. Yarotski, Appl. Phys. Lett. 106, 011901 (2015) ADSCrossRefGoogle Scholar
  10. 10.
    S.-T. Wang, D.-L. Deng, J.E. Moore, K. Sun, L.-M. Duan, Phys. Rev. B 91, 035108 (2015) ADSCrossRefGoogle Scholar
  11. 11.
    H.J. Zhang, C.-X. Liu., X.-L. Qi, X. Dai, Z. Fan, S.C. Zhang, Nat. Phys. 5, 438 (2009) CrossRefGoogle Scholar
  12. 12.
    D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J.H. Dil, J. Osterwalder, L. Patthey, A.V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan, Phys. Rev. Lett. 103, 146401 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    Y. Xia, D. Qian, L.D. Hsieh, W.A. Pal, H. Lin, A. Bansil, Y.S. Hor, R.J Cava, M.Z. Hasan, Nat. Phys. 5, 398 (2009) CrossRefGoogle Scholar
  14. 14.
    J.E. Moore, Nature 464, 194 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    P. Roushan, J. Seo, C.V. Parker, Y.S. Hor, D. Hsieh, D. Qian, A. Richardella, M.Z. Hasan, R.J. Cava, A. Yazdani, Nature 460, 1106 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    T. Zhang, P. Cheng, X. Chen, J.-F. Jia, X.C. Ma, K. He, L.L. Wang, H.J. Zhang, X. Dai, Z. Fang, X.C. Xie, Q.-K. Xue, Phys. Rev. Lett. 103, 266803 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    L. Fu, C.L. Kane, Phys. Rev. Lett. 100, 096407 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    W.-K. Tse, A.H. MacDonald, Phys. Rev. Lett. 105, 057401 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    J. Dufouleur, L. Veyrat, A. Teichgräber, S. Neuhaus, C. Nowka, S. Hampel, J. Cayssol, J. Schumann, B. Eichler, O.G. Schmidt, B. Büchner, R. Giraud, Phys. Rev. Lett. 110, 186806 (2013) ADSCrossRefGoogle Scholar
  20. 20.
    Y.L. Chen, J.G. Analytis, J.-H. Chu, Z.K. Liu, S.-K. Mo, X.L. Qi, H.J. Zhang, D.H. Lu, X. Dai, Z. Fang, S.C. Zhang, I.R. Fisher, Z. Hussain, Z.-X. Shen, Science 325, 178 (2009). ADSCrossRefGoogle Scholar
  21. 21.
    L. Fu, Phys. Rev. Lett. 103, 266801 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    C.M. Wang, F.J. Yu, Phys. Rev. B 84, 155440 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    X. Xiao, W. Wen, Phys. Rev. B 88, 045442 (2013) ADSCrossRefGoogle Scholar
  24. 24.
    Z. Li, J.P. Carbotte, Phys. Rev. B 87, 155416 (2013) ADSCrossRefGoogle Scholar
  25. 25.
    J.P.F. LeBlanc, J.P. Carbotte, Phys. Rev. B. 89, 035419 (2014) ADSCrossRefGoogle Scholar
  26. 26.
    N. Tzoar, C. Zhang, Phys. Rev. B 32, 1146 (1985) ADSCrossRefGoogle Scholar
  27. 27.
    Q. Chen, M. Sanderson, J.C. Cao, C. Zhang, Appl. Phys. Lett. 105, 202110 (2014) ADSCrossRefGoogle Scholar
  28. 28.
    C. Zhang, Z.S. Ma, Phys. Rev. B. 71, 121307(R) (2005) ADSCrossRefGoogle Scholar
  29. 29.
    N. Kotov, B. Uchoa, V.M. Pereira, F. Guinea, A.H.C. Neto, Rev. Mod. Phys. 84, 1067 (2012) ADSCrossRefGoogle Scholar
  30. 30.
    P. Gusynin, S.G. Sharapov, J.P. Carbotte, Phys. Rev. Lett. 96, 256802 (2006) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and Electronics, Hunan UniversityChangshaP.R. China
  2. 2.School of Physics, University of WollongongWollongongAustralia

Personalised recommendations