Molecules with two electronic energy levels: coupling between the molecules in the solid state via the optical and acoustic phonon branches

Abstract

In the adiabatic approximation the values of the spring constants of the springs contained in a molecule depend on its electronic state. We consider molecules with two electronic energy levels separated by Δ. For a crystal of such molecules, the phonon branches depend therefore on the electronic states of the molecules. One can ask if that dependence does not introduce a coupling between the molecules via the optical and the acoustic branches.

It is known that for a one-dimensional chain of N identical diatomic molecules there are two phonon branches, an optical branch and an acoustic one. In this study we introduce in the hamiltonian of the chain two assumptions: (i) each molecule has two electronic energy levels separated by Δ and the spring constant of the spring contained in the molecule has a value which depends on its electronic state; (ii) the spring constant of the spring which links two molecules nearest neighbours has a value which depends on the electronic states of both molecules linked.

One can show that phonons create on each molecule a field-like which favours the excited level and create between two molecules nearest neighbours an exchange-like interaction which can be ferro-like, antiferro-like and which can be equal to zero. For some values of T and Δ, the chain can display a first-order phase transition with the presence of a thermal hysteresis loop. The phase transition takes place between the phase where all the molecules are in the fundamental level and that where they are in the excited one. The parameters of the model can be expressed in function of the applied pressure and of the volume of the crystal.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. Messiah,Mécanique Quantique (Dunod, Paris, 2003)

  2. 2.

    J. Owen, J.H. Thomley, Rep. Prog. Phys. 29, 675 (1966)

    ADS  Article  Google Scholar 

  3. 3.

    K.L. Ronayne, H. Paulsen, A. Höfer, A.C. Dennis, J.A. Wolny, A.I. Chumakov, V. Schünemann, H. Winkler, H. Spiering, A. Bousseksou, P. Gütlich, A.X. Trautwein, J.J. McGarney, Phys. Chem. Chem. Phys. 8, 4685 (2006)

    Article  Google Scholar 

  4. 4.

    M. Sorai, S. Seki, J. Phys. Chem. Solids. 35, 555 (1974)

    ADS  Article  Google Scholar 

  5. 5.

    J.A. Nasser, Eur. Phys. J. B 21, 3 (2001)

    ADS  Article  Google Scholar 

  6. 6.

    J.A. Nasser, K. Boukheddaden, J. Linares, Eur. Phys. J. B 39, 219 (2004)

    ADS  Article  Google Scholar 

  7. 7.

    J.A. Nasser, Eur. Phys. J. B 48, 19 (2005)

    ADS  Article  Google Scholar 

  8. 8.

    J.A. Nasser, S. Topçu, L. Chassagne, M. Wakim, B. Bennali, J. Linares, Y. Alayli, Eur. Phys. J. B 83, 115 (2011)

    ADS  Article  Google Scholar 

  9. 9.

    J.A. Nasser, L. Chassagne, Y. Alayli, S.E. Allal, F. de Zela, J. Linares, Eur. J. Inorg. Chem. 2018, 493 (2018)

    Article  Google Scholar 

  10. 10.

    R. Balian,From  Microphysics  to  Macrophysics. Methods   and   Applications   of   Statistical   Physics (Springer-Verlag, Berlin, 1991)

  11. 11.

    J.-P. Martin,Mécanisme  des  Transitions  de  Spin  dans les  Composés  Moléculaires  à  l’Etat  Solide,  Ph.D.  thesis, Université de Paris-Sud, Centre d’Orsay, 1994

  12. 12.

    Y. Garcia, V. Ksenofontov, G. Levchenko, P. Gütlich, J. Mater. Chem. 10, 2274 (2000)

    Article  Google Scholar 

  13. 13.

    E. König, G. Ritter, S.K. Kulshreshtha, Chem. Rev. 85, 219 (1985)

    Article  Google Scholar 

  14. 14.

    J. Wajnflasz, Phys. Stat. Solidi 40, 537 (1970)

    ADS  Article  Google Scholar 

  15. 15.

    R. Zimmermann, E. König, JPCS 38, 779 (1977)

    ADS  Google Scholar 

  16. 16.

    H. Spiering, E. Meissner, H. Köppen, E.W. Müller, P. Gütlich, Chem. Phys. 68, 65 (1982)

    Article  Google Scholar 

  17. 17.

    P. Gütlich, inStructure and Bonding (Springer-Verlag, Berlin, 1981), Vol. 44

  18. 18.

    A. Bousseksou, J. Nasser, J. Linares, K. Boukheddaden, F. Varret, J. Phys. I 2, 1381 (1992)

    Google Scholar 

  19. 19.

    A. Bousseksou, M. Verelst, H. Constant-Machado, G. Lemercier, J.-P. Tuchagues, F. Varret, Inorg. Chem. 35, 110 (1996)

    Article  Google Scholar 

  20. 20.

    A. Bousseksou, J.J. McGarvey, F. Varret, J.A. Real, J.-P. Tuchagues, A.C. Dennis, M.L. Boillot, Chem. Phys. Lett. 318, 409 (2000)

    ADS  Article  Google Scholar 

  21. 21.

    V.K. Palfi, T. Guillon, H. Paulsen, G. Molnãr, A. Bousseksou, C.R. Chim. 8, 1317 (2005)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jamil A. Nasser.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nasser, J.A. Molecules with two electronic energy levels: coupling between the molecules in the solid state via the optical and acoustic phonon branches. Eur. Phys. J. B 91, 277 (2018). https://doi.org/10.1140/epjb/e2018-90290-6

Download citation

Keywords

  • Solid State and Materials