Skip to main content
Log in

Electronic stopping power from time-dependent density-functional theory in Gaussian basis

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The electronic stopping power, which is the energy transfer from a charged particle travelling through a material to the electrons of the material, has attracted much attention back from the early beginnings of quantum mechanics. It requires the description of the electronic excitations taking place in the target material and has been limited to model systems for a long time. With the advent of time-dependent density-functional theory (TDDFT), it is nowadays possible to provide a complete and realistic quantum-mechanical description of the phenomenon. We present here an implementation of TDDFT based on Gaussian basis for finite systems. The localized Gaussian basis has numerous advantages, such as the cheap account of core electrons, the simple implementation of the modern hybrid functionals, and the possibility of a tunable basis accuracy as a function of space. With our tool, we explore the bulk limit, the validity of the impact parameter averaging to obtain the experimental random electronic stopping power, and the connection to the simpler linear-response results for lithium metallic clusters for different ionic projectiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lindhard, M. Scharff, Mat. Fys. Medd. Dan. Vid. Selsk 27, 1 (1953)

    Google Scholar 

  2. J. Lindhard, Mat. Fys. Medd. Dan. Vid. Selsk 28, 1 (1954)

    MathSciNet  Google Scholar 

  3. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    Article  ADS  Google Scholar 

  4. M. Marques, E. Gross, Annu. Rev. Phys. Chem. 55, 427 (2004)

    Article  ADS  Google Scholar 

  5. S. Botti, A. Schindlmayr, R.D. Sole, L. Reining, Rep. Prog. Phys. 70, 357 (2007)

    Article  ADS  Google Scholar 

  6. M. Petersilka, U.J. Gossmann, E.K.U. Gross, Phys. Rev. Lett. 76, 1212 (1996)

    Article  ADS  Google Scholar 

  7. I. Campillo, J.M. Pitarke, A.G. Eguiluz, Phys. Rev. B 58, 10307 (1998)

    Article  ADS  Google Scholar 

  8. I. Campillo, J. Pitarke, A. Eguiluz, A. García, Nucl. Instrum. Meth. B 135, 103 (1998)

    Article  ADS  Google Scholar 

  9. J. Pitarke, I. Campillo, Nucl. Instrum. Meth. B 164–165, 147 (2000)

    Article  Google Scholar 

  10. J.M. Pruneda, D. Sánchez-Portal, A. Arnau, J.I. Juaristi, E. Artacho, Phys. Rev. Lett. 99, 235501 (2007)

    Article  ADS  Google Scholar 

  11. M. Quijada, A.G. Borisov, I. Nagy, R. Díez Muiño, P.M. Echenique, Phys. Rev. A 75, 042902 (2007)

    Article  ADS  Google Scholar 

  12. A.A. Correa, J. Kohanoff, E. Artacho, D. Sánchez-Portal, A. Caro, Phys. Rev. Lett. 108, 213201 (2012)

    Article  ADS  Google Scholar 

  13. M.A. Zeb, J. Kohanoff, D. Sánchez-Portal, A. Arnau, J.I. Juaristi, E. Artacho, Phys. Rev. Lett. 108, 225504 (2012)

    Article  ADS  Google Scholar 

  14. A. Schleife, E.W. Draeger, Y. Kanai, A.A. Correa, J. Chem. Phys. 137, 22A546 (2012)

    Article  Google Scholar 

  15. M.A. Zeb, J. Kohanoff, D. Sánchez-Portal, E. Artacho, Nucl. Instrum. Meth. B 303, 59 (2013)

    Article  ADS  Google Scholar 

  16. A. Ojanperä, A.V. Krasheninnikov, M. Puska, Phys. Rev. B 89, 035120 (2014)

    Article  ADS  Google Scholar 

  17. A. Schleife, Y. Kanai, A.A. Correa, Phys. Rev. B 91, 014306 (2015)

    Article  ADS  Google Scholar 

  18. K.G. Reeves, Y. Yao, Y. Kanai, Phys. Rev. B 94, 041108 (2016)

    Article  ADS  Google Scholar 

  19. D.C. Yost, Y. Kanai, Phys. Rev. B 94, 115107 (2016)

    Article  ADS  Google Scholar 

  20. D.C. Yost, Y. Yao, Y. Kanai, Phys. Rev. B 96, 115134 (2017)

    Article  ADS  Google Scholar 

  21. J. Kohanoff, E. Artacho, Plos One 12, 1 (2017)

    Article  Google Scholar 

  22. M. Caro, A.A. Correa, E. Artacho, A. Caro, Sci. Rep. 7, 2618 (2017)

    Article  ADS  Google Scholar 

  23. R.  Ullah, E. Artacho, A.A. Correa, arXiv:1802.04890 (2018)

  24. A. Schleife, E.W. Draeger, V.M. Anisimov, A.A. Correa, Y. Kanai, Comp. Sci. Eng. 16, 54 (2014)

    Article  Google Scholar 

  25. A. Ojanperä, V. Havu, L. Lehtovaara, M. Puska, J. Chem. Phys. 136, 144103 (2012)

    Article  ADS  Google Scholar 

  26. X. Andrade, D. Strubbe, U. De Giovannini, A.H. Larsen, M.J.T. Oliveira, J. Alberdi-Rodriguez, A. Varas, I. Theophilou, N. Helbig, M.J. Verstraete, L. Stella, F. Nogueira, A. Aspuru-Guzik, A. Castro, M.A.L. Marques, A. Rubio, Phys. Chem. Chem. Phys. 17, 31371 (2015)

    Article  Google Scholar 

  27. A.D. Becke, J. Chem. Phys. 98, 1372 (1993)

    Article  ADS  Google Scholar 

  28. C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999)

    Article  ADS  Google Scholar 

  29. E.H. Mortensen, J. Oddershede, J.R. Sabin, Nucl. Instrum. Meth. B 69, 24 (1992)

    Article  ADS  Google Scholar 

  30. J. Nobel, S. Trickey, J.R. Sabin, J. Oddershede, Chem. Phys. 309, 89 (2005)

    Article  ADS  Google Scholar 

  31. J.F. Ziegler, J.P. Biersack, U. Littmark, The stopping and ranges of ions in matter (Pergamon, New York, 1985)

  32. J.F. Ziegler, M. Ziegler, J. Biersack, Nucl. Instrum. Meth. B 268, 1818 (2010)

    Article  ADS  Google Scholar 

  33. A.A. Shukri, F. Bruneval, L. Reining, Phys. Rev. B 93, 035128 (2016)

    Article  ADS  Google Scholar 

  34. M. Valiev, E. Bylaska, N. Govind, K. Kowalski, T. Straatsma, H.V. Dam, D. Wang, J. Nieplocha, E. Apra, T. Windus, W. de Jong, Comput. Phys. Commun. 181, 1477 (2010)

    Article  ADS  Google Scholar 

  35. J. Hutter, M. Iannuzzi, F. Schiffmann, J. VandeVondele, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4, 15 (2014)

    Google Scholar 

  36. F. Bruneval, T. Rangel, S.M. Hamed, M. Shao, C. Yang, J.B. Neaton, Comput. Phys. Commun. 208, 149 (2016)

    Article  ADS  Google Scholar 

  37. F. Bruneval, M.A.L. Marques, J. Chem. Theory Comput. 9, 324 (2013)

    Article  Google Scholar 

  38. F. Bruneval, S.M. Hamed, J.B. Neaton, J. Chem. Phys. 142, 244101 (2015)

    Article  ADS  Google Scholar 

  39. F. Weigend, Phys. Chem. Chem. Phys. 4, 4285 (2002)

    Article  Google Scholar 

  40. C.A. Ullrich, Time-dependent density-functional theory: concepts and applications, Oxford graduate texts (Oxford University Press, Oxford, New York, 2012)

  41. C. ORourke, D.R. Bowler, J. Chem. Phys. 143, 102801 (2015)

    Article  ADS  Google Scholar 

  42. W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954)

    Article  Google Scholar 

  43. A. Castro, M.A.L. Marques, A. Rubio, J. Chem. Phys. 121, 3425 (2004)

    Article  ADS  Google Scholar 

  44. C.L. Cheng, J.S. Evans, T. Van Voorhis, Phys. Rev. B 74, 155112 (2006)

    Article  ADS  Google Scholar 

  45. D.E. Woon, T.H.D. Jr., J. Chem. Phys. 103, 4572 (1995)

    Article  ADS  Google Scholar 

  46. A.A. Shukri, Ab initio electronic stopping power in materials. Ph.D. thesis, Ecole Polytechnique, 2015

  47. M. Bader, R.E. Pixley, F.S. Mozer, W. Whaling, Phys. Rev. 103, 32 (1956)

    Article  ADS  Google Scholar 

  48. C. Eppacher, R.D. Muio, D. Semrad, A. Arnau, Nucl. Instrum. Meth. B 96, 639 (1995)

    Article  ADS  Google Scholar 

  49. X. Gonze, F. Jollet, F.A. Araujo, D. Adams, B. Amadon, T. Applencourt, C. Audouze, J.M. Beuken, J. Bieder, A. Bokhanchuk, E. Bousquet, F. Bruneval, D. Caliste, M. Côté, F. Dahm, F.D. Pieve, M. Delaveau, M.D. Gennaro, B. Dorado, C. Espejo, G. Geneste, L. Genovese, A. Gerossier, M. Giantomassi, Y. Gillet, D. Hamann, L. He, G. Jomard, J.L. Janssen, S.L. Roux, A. Levitt, A. Lherbier, F. Liu, I. Lukačević, A. Martin, C. Martins, M. Oliveira, S. Poncé, Y. Pouillon, T. Rangel, G.M. Rignanese, A. Romero, B. Rousseau, O. Rubel, A. Shukri, M. Stankovski, M. Torrent, M.V. Setten, B.V. Troeye, M. Verstraete, D. Waroquiers, J. Wiktor, B. Xu, A. Zhou, J. Zwanziger, Comp. Phys. Commun. 205, 106 (2016)

    Article  ADS  Google Scholar 

  50. W.H. Barkas, J.N. Dyer, H.H. Heckman, Phys. Rev. Lett. 11, 26 (1963)

    Article  ADS  Google Scholar 

  51. S. Rosenblum, Ann. Phys. 10, 408 (1928)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Bruneval.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maliyov, I., Crocombette, JP. & Bruneval, F. Electronic stopping power from time-dependent density-functional theory in Gaussian basis. Eur. Phys. J. B 91, 172 (2018). https://doi.org/10.1140/epjb/e2018-90289-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90289-y

Navigation