Molecular velocity auto-correlation of simple liquids observed by NMR MGSE method

Abstract

The velocity auto-correlation spectra of simple liquids obtained by the NMR method of modulated gradient spin echo show features in the low frequency range up to a few kHz, which can be explained reasonably well by a t−3∕2 long-time tail decay only for non-polar liquid toluene, while the spectra of polar liquids, such as ethanol, water and glycerol, are more congruent with the model of diffusion of particles temporarily trapped in potential wells created by their neighbors. As the method provides the spectrum averaged over ensemble of particle trajectories, the initial non-exponential decay of spin echoes is attributed to a spatial heterogeneity of molecular motion in a bulk of liquid, reflected in distribution of the echo decays for short spin trajectories. While at longer time intervals, and thus with longer trajectories, heterogeneity is averaged out, giving rise to a spectrum which is explained as a combination of molecular self-diffusion and eddy diffusion within the vortexes of hydrodynamic fluctuations.

References

  1. 1.

    L.D. Landau, E.M. Lifshitz, J. Exp. Theor. Phys. 32, 618 (1957)

    Google Scholar 

  2. 2.

    V. Vladimirsky, J. Terletzky, J. Exp. Theor. Phys. 15, 258 (1945)

    Google Scholar 

  3. 3.

    M.S. Giterman, M.E. Gertsenshtein, J. Exp. Theor. Phys. 23, 723 (1966)

    ADS  Google Scholar 

  4. 4.

    L. Landau, E. Lifshitz, inFluid Mechanics, A Course of Theoretical Physics (Pergamon Press, Oxford, 1959), Vol. 6

  5. 5.

    B. Alder, T. Wainwright, Phys. Rev. Lett. 18, 988 (1967)

    ADS  Google Scholar 

  6. 6.

    B. Alder, T. Wainwright, Phys. Rev. A 1, 18 (1970)

    ADS  Google Scholar 

  7. 7.

    M. Sakamoto, J. Phys. Soc. Jpn. 19, 1862 (1964)

    ADS  Google Scholar 

  8. 8.

    K.F. Larsson, Phys. Rev. 167, 171 (1968)

    ADS  Google Scholar 

  9. 9.

    V. Ardente, G. Nardelli, L. Reatto, Phys. Rev. 148, 124 (1966)

    ADS  Google Scholar 

  10. 10.

    G. Maret, P. Wolf, Z. Phys. B 65, 409 (1987)

    ADS  Google Scholar 

  11. 11.

    J.P. Boon, S. Yip,Molecular hydrodynamics (Dover Publications, Incorporated, New York, 2013)

  12. 12.

    J. Boon, A. Bouller, Phys. Lett. A 55, 391 (1976)

    ADS  Google Scholar 

  13. 13.

    G.L. Paul, P.N. Pusey, J. Phys. A: Math. Gen. 14, 3301 (1981)

    ADS  Google Scholar 

  14. 14.

    W. van Megen, Phys. Rev. E 73, 011401 (2006)

    ADS  Google Scholar 

  15. 15.

    W.K. Kegel, A. van Blaaderen, Science 287, 290 (2000)

    ADS  Google Scholar 

  16. 16.

    J.R. Dorfman, E.G.D. Cohen, Phys. Rev. A 12, 292 (1975)

    ADS  Google Scholar 

  17. 17.

    D. Levesque, L. Verlet, Phys. Rev. A 2, 2514 (1970)

    ADS  Google Scholar 

  18. 18.

    D. Levesque, T. Ashurst, Phys. Rev. Lett. 33, 277 (1974)

    ADS  Google Scholar 

  19. 19.

    J. Marro, J. Masoliver, Phys. Rev. Lett. 54, 731 (1984)

    ADS  Google Scholar 

  20. 20.

    A. Rahman, Phys. Rev. 136, A405 (1964)

    ADS  Google Scholar 

  21. 21.

    C.D. Andriesse, Physica 48, 61 (1970)

    ADS  Google Scholar 

  22. 22.

    K. Carneiro, Phys. Rev. A 14, 517 (1976)

    ADS  Google Scholar 

  23. 23.

    C. Morkel, C. Gronemeyer, W. Glaser, J. Bosse, Phys. Rev. Lett. 58, 1873 (1987)

    ADS  Google Scholar 

  24. 24.

    H.L. Peng, H.R. Schober, T. Voigtmann, Phys. Rev. E 94, 060601(R) (2016)

    ADS  Google Scholar 

  25. 25.

    C. Vega, J.L.F. Abascal, Phys. Chem. Chem. Phys. 13, 19663 (2011)

    Google Scholar 

  26. 26.

    R.E. Ryitsev, N.M. Chtchelkatchev, J. Chem. Phys. 141, 124509 (2014)

    ADS  Google Scholar 

  27. 27.

    A. McDonough, S.P. Russo, I.K. Snook, Phys. Rev. E 63, 026109 (2011)

    ADS  Google Scholar 

  28. 28.

    R.F.A. Dib, F. Ould-Kaddour, Phys. Rev. E 74, 011202 (2006)

    ADS  Google Scholar 

  29. 29.

    S. Bellissima, M. Neumann, E. Guarini, U. Bale, F. Barocchi, Phys. Rev. E 92, 042166 (2015)

    ADS  Google Scholar 

  30. 30.

    J. Stepišnik, A. Mohorič, C. Matea, S. Stapf, I. Serša, Europhys. Lett. 106, 27007 (2014)

    ADS  Google Scholar 

  31. 31.

    S. Lasič, J. Stepišnik, A. Mohorič, I. Serša, G. Planinšič, Europhys. Lett. 75, 887 (2006)

    ADS  Google Scholar 

  32. 32.

    J. Stepišnik, P. Callaghan, Physica B 292, 296 (2000)

    ADS  Google Scholar 

  33. 33.

    P.T. Callaghan, S.L. Codd, Phys. Fluids 13, 421 (2001)

    ADS  Google Scholar 

  34. 34.

    D. Topgaard, C. Malmborg, O. Soederman, J. Mag. Res. 156, 195 (2002)

    ADS  Google Scholar 

  35. 35.

    E.C. Parsons, M.D. Does, J.C. Gore, Magn. Reson. Imaging 21, 279 (2003)

    Google Scholar 

  36. 36.

    R. Mills, J. Phys. Chem. 77, 685 (1973)

    Google Scholar 

  37. 37.

    E.L. Hahn, Phys. Rev. 80, 580 (1950)

    ADS  Google Scholar 

  38. 38.

    H.Y. Carr, E.M. Purcell, Phys. Rev. 94, 630 (1954)

    ADS  Google Scholar 

  39. 39.

    H.C. Torrey, Phys. Rev. 104, 563 (1956)

    ADS  Google Scholar 

  40. 40.

    E.O. Stejskal, J. Chem. Phys. 43, 3597 (1965)

    ADS  Google Scholar 

  41. 41.

    N. Galamba, J. Phys.: Condens. Matter 29, 015101 (2017)

    ADS  Google Scholar 

  42. 42.

    F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, L. Liu, C.Y. Mou, S.H. Chen, J. Phys.: Condens. Matter 18, S22852297 (2006)

    Google Scholar 

  43. 43.

    R. Lamanna, M. Delmelle, S. Cannistraro, Phys. Rev. E 49, 2841 (1994)

    ADS  Google Scholar 

  44. 44.

    A. Chandra, S. Chowdhuri, Proc. Indian Acad. Sci. 113, 591 (2001)

    Google Scholar 

  45. 45.

    M. Mahoney, W. Jorgensen, J. Chem. Phys. 114, 363 (2001)

    ADS  Google Scholar 

  46. 46.

    K. Krynicki, C.D. Green, D.W. Sawyer, Faraday Discuss. Chem. Soc. 66, 199 (1978)

    Google Scholar 

  47. 47.

    K. Yoshida, C. Waka, N. Matubayasi, M. Nakahara, J. Chem. Phys. 123, 164506 (2005)

    ADS  Google Scholar 

  48. 48.

    A. Einstein, Ann. Phys. 322, 891 (1905)

    Google Scholar 

  49. 49.

    R. Kubo, Rep. Prog. Phys. 29, 255 (1966)

    ADS  Google Scholar 

  50. 50.

    W.M. Visscher, Phys. Rev. A 7, 1439 (1973)

    ADS  Google Scholar 

  51. 51.

    V. Lisy, J. Tothova, J. Mol. Liq. 234, 182 (2017)

    Google Scholar 

  52. 52.

    J. Stepišnik Physica B 104, 350 (1981)

    Google Scholar 

  53. 53.

    J. Stepišnik, Prog. Nucl. Magn. Reson. Spectrosc. 17, 187 (1985)

    Google Scholar 

  54. 54.

    P. Callaghan, J. Stepišnik, J. Magn. Reson. A 117, 118 (1995)

    ADS  Google Scholar 

  55. 55.

    P. Callaghan, J. Stepišnik, Generalised analysis of motion using magnetic field gradients, inAdvances in Magnetic and Optical Resonance, edited by W.S. Warren (Academic Press, Inc, San Diego, 1996), Vol. 19, pp. 326–389

  56. 56.

    M. Aggarwal, M. Jones, P. Calabresi, S. Mori, J. Zhang, Magn. Reson. Med. 67, 98 (2012)

    Google Scholar 

  57. 57.

    J. Stepišnik, I. Ardelean, J. Magn. Reson. 272, 100 (2016)

    ADS  Google Scholar 

  58. 58.

    S. Meiboom, D. Gill, Rev. Sci. Inst. 29, 688 (1958)

    ADS  Google Scholar 

  59. 59.

    J. Kowalewski, L. Maler,Nuclear spin relaxation in liquids: theory, experiments, and applications, Series in chemical physics (Taylor and Francis Group, Suite, FL, 2006)

  60. 60.

    R.P. Feynman, Phys. Rev. 84, 109 (1951)

    ADS  Google Scholar 

  61. 61.

    F. Dyson, Phys. Rev. 75, 486 (1949)

    ADS  MathSciNet  Google Scholar 

  62. 62.

    A. Mohorič, J. Stepišnik, Prog. Nucl. Magn. Reson. Spectrosc. 54, 166 (2009)

    Google Scholar 

  63. 63.

    J. Stepišnik, Europhys. Lett. 60, 453 (2002)

    ADS  Google Scholar 

  64. 64.

    B. Bluemich, F. Casanova, S. Appelt, Chem. Phys. Lett. 477, 231 (2009)

    ADS  Google Scholar 

  65. 65.

    S.F. Swallen, P.A. Bonvallet, R.J. McMahon, M.D. Ediger, Phys. Rev. Lett. 90, 015901 (2003)

    ADS  Google Scholar 

  66. 66.

    P. Mazur, G. van der Zwan, Physica A 92, 483 (1978)

    ADS  Google Scholar 

  67. 67.

    D.C. Douglass, J. Chem. Phys. 35, 81 (1961)

    ADS  MathSciNet  Google Scholar 

  68. 68.

    S. Pickup, F. Blum, Macromolecules 22, 3961 (1989)

    ADS  Google Scholar 

  69. 69.

    S. Meckl, M. Zeidler, Mol. Phys. 63, 85 (1988)

    ADS  Google Scholar 

  70. 70.

    G. D’Errico, O. Ortona, F. Capuano, V. Vitagliano, J. Chem. Eng. Data 49, 1665 (2004)

    Google Scholar 

  71. 71.

    D.I. Graham, Int. J. Multiphase Flow 27, 1065 (2001)

    Google Scholar 

  72. 72.

    W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954)

    Google Scholar 

  73. 73.

    M.D. Hurlimann, J. Mag. Res. 148, 367 (2001)

    ADS  Google Scholar 

  74. 74.

    Y.Q. Song, J. Magn. Reson. 157, 82 (2002)

    ADS  Google Scholar 

  75. 75.

    E. Toumelin, C. Torres-Verdın, B. Sun, K. Dunn, J. Mag. Res. 188, 83 (2007)

    ADS  Google Scholar 

  76. 76.

    I. Serša, F. Bajd, A. Mohorič, J. Mag. Res. 270, 77 (2016)

    ADS  Google Scholar 

  77. 77.

    E.O. Stejskal, J.E. Tanner, J. Chem. Phys. 42, 288 (1965)

    ADS  Google Scholar 

  78. 78.

    W. Heisenberg, Z. Phys. 43, 172 (1927)

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Janez Stepišnik.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stepišnik, J., Mattea, C., Stapf, S. et al. Molecular velocity auto-correlation of simple liquids observed by NMR MGSE method. Eur. Phys. J. B 91, 293 (2018). https://doi.org/10.1140/epjb/e2018-90284-4

Download citation

Keywords

  • Statistical and Nonlinear Physics